/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == HELI_FRAME #define HELI_SERVO_AVERAGING_DIGITAL 0 // 250Hz #define HELI_SERVO_AVERAGING_ANALOG 2 // 125Hz static float heli_throttle_scaler = 0; // heli_servo_averaging: // 0 or 1 = no averaging, 250hz // 2 = average two samples, 125hz // 3 = averaging three samples = 83.3 hz // 4 = averaging four samples = 62.5 hz // 5 = averaging 5 samples = 50hz // digital = 0 / 250hz, analog = 2 / 83.3 static void heli_init_swash() { int i; int tilt_max[CH_3+1]; int total_tilt_max = 0; // swash servo initialisation g.heli_servo_1.set_range(0,1000); g.heli_servo_2.set_range(0,1000); g.heli_servo_3.set_range(0,1000); g.heli_servo_4.set_angle(4500); // pitch factors heli_pitchFactor[CH_1] = cos(radians(g.heli_servo1_pos)); heli_pitchFactor[CH_2] = cos(radians(g.heli_servo2_pos)); heli_pitchFactor[CH_3] = cos(radians(g.heli_servo3_pos)); // roll factors heli_rollFactor[CH_1] = cos(radians(g.heli_servo1_pos + 90)); heli_rollFactor[CH_2] = cos(radians(g.heli_servo2_pos + 90)); heli_rollFactor[CH_3] = cos(radians(g.heli_servo3_pos + 90)); // collective min / max total_tilt_max = 0; for( i=CH_1; i<=CH_3; i++ ) { tilt_max[i] = max(abs(heli_rollFactor[i]*g.heli_roll_max), abs(heli_pitchFactor[i]*g.heli_pitch_max))/100; total_tilt_max = max(total_tilt_max,tilt_max[i]); } // servo min/max values - or should I use set_range? g.heli_servo_1.radio_min = g.heli_coll_min - tilt_max[CH_1]; g.heli_servo_1.radio_max = g.heli_coll_max + tilt_max[CH_1]; g.heli_servo_2.radio_min = g.heli_coll_min - tilt_max[CH_2]; g.heli_servo_2.radio_max = g.heli_coll_max + tilt_max[CH_2]; g.heli_servo_3.radio_min = g.heli_coll_min - tilt_max[CH_3]; g.heli_servo_3.radio_max = g.heli_coll_max + tilt_max[CH_3]; // scaler for changing channel 3 radio input into collective range heli_throttle_scaler = ((float)(g.heli_coll_max - g.heli_coll_min))/1000; // reset the servo averaging for( i=0; i<=3; i++ ) heli_servo_out[i] = 0; // double check heli_servo_averaging is reasonable if( g.heli_servo_averaging < 0 || g.heli_servo_averaging < 0 > 5 ) { g.heli_servo_averaging = 0; g.heli_servo_averaging.save(); } } static void heli_move_servos_to_mid() { heli_move_swash(0,0,1500,0); } // // heli_move_swash - moves swash plate to attitude of parameters passed in // - expected ranges: // roll : -4500 ~ 4500 // pitch: -4500 ~ 4500 // collective: 1000 ~ 2000 // yaw: -4500 ~ 4500 // static void heli_move_swash(int roll_out, int pitch_out, int coll_out, int yaw_out) { // ensure values are acceptable: if( g.heli_servo_manual != 1) { roll_out = constrain(roll_out, (int)-g.heli_roll_max, (int)g.heli_roll_max); pitch_out = constrain(pitch_out, (int)-g.heli_pitch_max, (int)g.heli_pitch_max); coll_out = constrain(coll_out, (int)g.heli_coll_min, (int)g.heli_coll_max); } // swashplate servos g.heli_servo_1.servo_out = (heli_rollFactor[CH_1] * roll_out + heli_pitchFactor[CH_1] * pitch_out)/10 + coll_out - 1000 + (g.heli_servo_1.radio_trim-1500); g.heli_servo_2.servo_out = (heli_rollFactor[CH_2] * roll_out + heli_pitchFactor[CH_2] * pitch_out)/10 + coll_out - 1000 + (g.heli_servo_2.radio_trim-1500); g.heli_servo_3.servo_out = (heli_rollFactor[CH_3] * roll_out + heli_pitchFactor[CH_3] * pitch_out)/10 + coll_out - 1000 + (g.heli_servo_3.radio_trim-1500); g.heli_servo_4.servo_out = yaw_out; // use servo_out to calculate pwm_out and radio_out g.heli_servo_1.calc_pwm(); g.heli_servo_2.calc_pwm(); g.heli_servo_3.calc_pwm(); g.heli_servo_4.calc_pwm(); // add the servo values to the averaging heli_servo_out[0] += g.heli_servo_1.radio_out; heli_servo_out[1] += g.heli_servo_2.radio_out; heli_servo_out[2] += g.heli_servo_3.radio_out; heli_servo_out[3] += g.heli_servo_4.radio_out; heli_servo_out_count++; // is it time to move the servos? if( heli_servo_out_count >= g.heli_servo_averaging ) { // average the values if necessary if( g.heli_servo_averaging >= 2 ) { heli_servo_out[0] /= g.heli_servo_averaging; heli_servo_out[1] /= g.heli_servo_averaging; heli_servo_out[2] /= g.heli_servo_averaging; heli_servo_out[3] /= g.heli_servo_averaging; } // actually move the servos APM_RC.OutputCh(CH_1, heli_servo_out[0]); APM_RC.OutputCh(CH_2, heli_servo_out[1]); APM_RC.OutputCh(CH_3, heli_servo_out[2]); APM_RC.OutputCh(CH_4, heli_servo_out[3]); // output gyro value if( g.heli_ext_gyro_enabled ) { APM_RC.OutputCh(CH_7, g.heli_ext_gyro_gain); } #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); #endif // reset the averaging heli_servo_out_count = 0; heli_servo_out[0] = 0; heli_servo_out[1] = 0; heli_servo_out[2] = 0; heli_servo_out[3] = 0; } } static void init_motors_out() { #if INSTANT_PWM == 0 ICR5 = 5000; // 400 hz output CH 1, 2, 9 ICR1 = 5000; // 400 hz output CH 3, 4, 10 ICR3 = 40000; // 50 hz output CH 7, 8, 11 #endif } // these are not really motors, they're servos but we don't rename the function because it fits with the rest of the code better static void output_motors_armed() { // if manual override (i.e. when setting up swash), pass pilot commands straight through to swash if( g.heli_servo_manual == 1 ) { g.rc_1.servo_out = g.rc_1.control_in; g.rc_2.servo_out = g.rc_2.control_in; g.rc_3.servo_out = g.rc_3.control_in; g.rc_4.servo_out = g.rc_4.control_in; } //static int counter = 0; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); heli_move_swash( g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out ); } // for helis - armed or disarmed we allow servos to move static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle, remove safety motor_auto_armed = true; } output_motors_armed(); } static void output_motor_test() { } // heli_get_scaled_throttle - user's throttle scaled to collective range // input is expected to be in the range of 0~1000 (ie. pwm) // also does equivalent of angle_boost static int heli_get_scaled_throttle(int throttle) { float scaled_throttle = (g.heli_coll_min - 1000) + throttle * heli_throttle_scaler; return scaled_throttle; } // heli_angle_boost - takes servo_out position // adds a boost depending on roll/pitch values // equivalent of quad's angle_boost function // pwm_out value should be 0 ~ 1000 static int heli_get_angle_boost(int pwm_out) { float angle_boost_factor = cos_pitch_x * cos_roll_x; angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); int throttle_above_center = max(1000 + pwm_out - g.heli_coll_mid,0); return pwm_out + throttle_above_center*angle_boost_factor; } #endif // HELI_FRAME