/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* suppport for serial connected AHRS systems */ #define ALLOW_DOUBLE_MATH_FUNCTIONS #include "AP_ExternalAHRS_VectorNav.h" #include #include #include #include #include #include #include #include #include #include #if HAL_EXTERNAL_AHRS_ENABLED extern const AP_HAL::HAL &hal; /* send requested config to the VN */ void AP_ExternalAHRS_VectorNav::send_config(void) const { nmea_printf(uart, "$VNWRG,75,3,%u,35,0003,0F2C,0147,0613", unsigned(400/get_rate())); nmea_printf(uart, "$VNWRG,76,3,80,4E,0002,0010,20B8,2018"); } /* header for pre-configured 50Hz data assumes the following config for VN-300: $VNWRG,75,3,8,35,0003,0F2C,0147,0613*2642 */ static const uint8_t vn_pkt1_header[] { 0x35, 0x03, 0x00, 0x2c, 0x0f, 0x47, 0x01, 0x13, 0x06 }; #define VN_PKT1_LENGTH 194 // includes header struct PACKED VN_packet1 { uint64_t timeStartup; uint64_t timeGPS; float uncompAccel[3]; float uncompAngRate[3]; float pressure; float mag[3]; float accel[3]; float gyro[3]; uint16_t sensSat; uint16_t AHRSStatus; float ypr[3]; float quaternion[4]; float linAccBody[3]; float yprU[3]; uint16_t INSStatus; double positionLLA[3]; float velNED[3]; float posU; float velU; }; // check packet size for 4 groups static_assert(sizeof(VN_packet1)+2+4*2+2 == VN_PKT1_LENGTH, "incorrect VN_packet1 length"); /* header for pre-configured 5Hz data assumes the following VN-300 config: $VNWRG,76,3,80,4E,0002,0010,20B8,2018*A66B */ static const uint8_t vn_pkt2_header[] { 0x4e, 0x02, 0x00, 0x10, 0x00, 0xb8, 0x20, 0x18, 0x20 }; #define VN_PKT2_LENGTH 120 // includes header struct PACKED VN_packet2 { uint64_t timeGPS; float temp; uint8_t numGPS1Sats; uint8_t GPS1Fix; double GPS1posLLA[3]; float GPS1velNED[3]; float GPS1DOP[7]; uint8_t numGPS2Sats; uint8_t GPS2Fix; float GPS2DOP[7]; }; // check packet size for 4 groups static_assert(sizeof(VN_packet2)+2+4*2+2 == VN_PKT2_LENGTH, "incorrect VN_packet2 length"); // constructor AP_ExternalAHRS_VectorNav::AP_ExternalAHRS_VectorNav(AP_ExternalAHRS *_frontend, AP_ExternalAHRS::state_t &_state) : AP_ExternalAHRS_backend(_frontend, _state) { auto &sm = AP::serialmanager(); uart = sm.find_serial(AP_SerialManager::SerialProtocol_AHRS, 0); if (!uart) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "ExternalAHRS no UART"); return; } baudrate = sm.find_baudrate(AP_SerialManager::SerialProtocol_AHRS, 0); port_num = sm.find_portnum(AP_SerialManager::SerialProtocol_AHRS, 0); bufsize = MAX(VN_PKT1_LENGTH, VN_PKT2_LENGTH); pktbuf = new uint8_t[bufsize]; last_pkt1 = new VN_packet1; last_pkt2 = new VN_packet2; if (!pktbuf || !last_pkt1 || !last_pkt2) { AP_HAL::panic("Failed to allocate ExternalAHRS"); } if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ExternalAHRS_VectorNav::update_thread, void), "AHRS", 2048, AP_HAL::Scheduler::PRIORITY_SPI, 0)) { AP_HAL::panic("Failed to start ExternalAHRS update thread"); } GCS_SEND_TEXT(MAV_SEVERITY_INFO, "ExternalAHRS initialised"); } /* check the UART for more data returns true if the function should be called again straight away */ bool AP_ExternalAHRS_VectorNav::check_uart() { if (!port_opened) { return false; } WITH_SEMAPHORE(state.sem); uint32_t n = uart->available(); if (n == 0) { return false; } if (pktoffset < bufsize) { ssize_t nread = uart->read(&pktbuf[pktoffset], MIN(n, unsigned(bufsize-pktoffset))); if (nread <= 0) { return false; } pktoffset += nread; } bool match_header1, match_header2; if (pktbuf[0] != 0xFA) { goto reset; } match_header1 = (0 == memcmp(&pktbuf[1], vn_pkt1_header, MIN(sizeof(vn_pkt1_header), unsigned(pktoffset-1)))); match_header2 = (0 == memcmp(&pktbuf[1], vn_pkt2_header, MIN(sizeof(vn_pkt2_header), unsigned(pktoffset-1)))); if (!match_header1 && !match_header2) { goto reset; } if (match_header1 && pktoffset >= VN_PKT1_LENGTH) { uint16_t crc = crc16_ccitt(&pktbuf[1], VN_PKT1_LENGTH-1, 0); if (crc == 0) { // got pkt1 process_packet1(&pktbuf[sizeof(vn_pkt1_header)+1]); memmove(&pktbuf[0], &pktbuf[VN_PKT1_LENGTH], pktoffset-VN_PKT1_LENGTH); pktoffset -= VN_PKT1_LENGTH; } else { goto reset; } } else if (match_header2 && pktoffset >= VN_PKT2_LENGTH) { uint16_t crc = crc16_ccitt(&pktbuf[1], VN_PKT2_LENGTH-1, 0); if (crc == 0) { // got pkt2 process_packet2(&pktbuf[sizeof(vn_pkt2_header)+1]); memmove(&pktbuf[0], &pktbuf[VN_PKT2_LENGTH], pktoffset-VN_PKT2_LENGTH); pktoffset -= VN_PKT2_LENGTH; } else { goto reset; } } return true; reset: uint8_t *p = (uint8_t *)memchr(&pktbuf[1], (char)0xFA, pktoffset-1); if (p) { uint8_t newlen = pktoffset - (p - pktbuf); memmove(&pktbuf[0], p, newlen); pktoffset = newlen; } else { pktoffset = 0; } return true; } void AP_ExternalAHRS_VectorNav::update_thread() { if (!port_opened) { // open port in the thread port_opened = true; uart->begin(baudrate, 1024, 512); send_config(); } while (true) { if (!check_uart()) { hal.scheduler->delay(1); } } } /* process packet type 1 */ void AP_ExternalAHRS_VectorNav::process_packet1(const uint8_t *b) { const struct VN_packet1 &pkt1 = *(struct VN_packet1 *)b; const struct VN_packet2 &pkt2 = *last_pkt2; last_pkt1_ms = AP_HAL::millis(); *last_pkt1 = pkt1; { WITH_SEMAPHORE(state.sem); state.accel = Vector3f{pkt1.accel[0], pkt1.accel[1], pkt1.accel[2]}; state.gyro = Vector3f{pkt1.gyro[0], pkt1.gyro[1], pkt1.gyro[2]}; state.quat = Quaternion{pkt1.quaternion[3], pkt1.quaternion[0], pkt1.quaternion[1], pkt1.quaternion[2]}; state.have_quaternion = true; state.velocity = Vector3f{pkt1.velNED[0], pkt1.velNED[1], pkt1.velNED[2]}; state.have_velocity = true; state.location = Location{int32_t(pkt1.positionLLA[0] * 1.0e7), int32_t(pkt1.positionLLA[1] * 1.0e7), int32_t(pkt1.positionLLA[2] * 1.0e2), Location::AltFrame::ABSOLUTE}; state.have_location = true; } { AP_ExternalAHRS::baro_data_message_t baro; baro.instance = 0; baro.pressure_pa = pkt1.pressure*1e3; baro.temperature = pkt2.temp; AP::baro().handle_external(baro); } { AP_ExternalAHRS::mag_data_message_t mag; mag.field = Vector3f{pkt1.mag[0], pkt1.mag[1], pkt1.mag[2]}; mag.field *= 1000; // to mGauss AP::compass().handle_external(mag); } { AP_ExternalAHRS::ins_data_message_t ins; ins.accel = state.accel; ins.gyro = state.gyro; ins.temperature = pkt2.temp; AP::ins().handle_external(ins); } // @LoggerMessage: EAH1 // @Description: External AHRS data // @Field: TimeUS: Time since system startup // @Field: Roll: euler roll // @Field: Pitch: euler pitch // @Field: Yaw: euler yaw // @Field: VN: velocity north // @Field: VE: velocity east // @Field: VD: velocity down // @Field: Lat: latitude // @Field: Lon: longitude // @Field: Alt: altitude AMSL // @Field: UXY: uncertainty in XY position // @Field: UV: uncertainty in velocity // @Field: UR: uncertainty in roll // @Field: UP: uncertainty in pitch // @Field: UY: uncertainty in yaw AP::logger().WriteStreaming("EAH1", "TimeUS,Roll,Pitch,Yaw,VN,VE,VD,Lat,Lon,Alt,UXY,UV,UR,UP,UY", "sdddnnnDUmmnddd", "F000000GG000000", "QffffffLLffffff", AP_HAL::micros64(), pkt1.ypr[2], pkt1.ypr[1], pkt1.ypr[0], pkt1.velNED[0], pkt1.velNED[1], pkt1.velNED[2], int32_t(pkt1.positionLLA[0]*1.0e7), int32_t(pkt1.positionLLA[1]*1.0e7), float(pkt1.positionLLA[2]), pkt1.posU, pkt1.velU, pkt1.yprU[2], pkt1.yprU[1], pkt1.yprU[0]); } /* process packet type 2 */ void AP_ExternalAHRS_VectorNav::process_packet2(const uint8_t *b) { const struct VN_packet2 &pkt2 = *(struct VN_packet2 *)b; const struct VN_packet1 &pkt1 = *last_pkt1; last_pkt2_ms = AP_HAL::millis(); *last_pkt2 = pkt2; AP_ExternalAHRS::gps_data_message_t gps; // get ToW in milliseconds gps.gps_week = pkt2.timeGPS / (AP_MSEC_PER_WEEK * 1000000ULL); gps.ms_tow = (pkt2.timeGPS / 1000000ULL) % (60*60*24*7*1000ULL); gps.fix_type = pkt2.GPS1Fix; gps.satellites_in_view = pkt2.numGPS1Sats; gps.horizontal_pos_accuracy = pkt1.posU; gps.vertical_pos_accuracy = pkt1.posU; gps.horizontal_vel_accuracy = pkt1.velU; gps.hdop = pkt2.GPS1DOP[4]; gps.vdop = pkt2.GPS1DOP[3]; gps.latitude = pkt2.GPS1posLLA[0] * 1.0e7; gps.longitude = pkt2.GPS1posLLA[1] * 1.0e7; gps.msl_altitude = pkt2.GPS1posLLA[2] * 1.0e2; gps.ned_vel_north = pkt2.GPS1velNED[0]; gps.ned_vel_east = pkt2.GPS1velNED[1]; gps.ned_vel_down = pkt2.GPS1velNED[2]; if (gps.fix_type >= 3 && !state.have_origin) { WITH_SEMAPHORE(state.sem); state.origin = Location{int32_t(pkt2.GPS1posLLA[0] * 1.0e7), int32_t(pkt2.GPS1posLLA[1] * 1.0e7), int32_t(pkt2.GPS1posLLA[2] * 1.0e2), Location::AltFrame::ABSOLUTE}; state.have_origin = true; } AP::gps().handle_external(gps); } // get serial port number for the uart int8_t AP_ExternalAHRS_VectorNav::get_port(void) const { if (!uart) { return -1; } return port_num; }; // accessors for AP_AHRS bool AP_ExternalAHRS_VectorNav::healthy(void) const { uint32_t now = AP_HAL::millis(); return (now - last_pkt1_ms < 40 && now - last_pkt2_ms < 500); } bool AP_ExternalAHRS_VectorNav::initialised(void) const { return last_pkt1_ms != 0 && last_pkt2_ms != 0; } bool AP_ExternalAHRS_VectorNav::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { if (!healthy()) { hal.util->snprintf(failure_msg, failure_msg_len, "VectorNav unhealthy"); return false; } if (last_pkt2->GPS1Fix < 3) { hal.util->snprintf(failure_msg, failure_msg_len, "VectorNav no GPS1 lock"); return false; } if (last_pkt2->GPS2Fix < 3) { hal.util->snprintf(failure_msg, failure_msg_len, "VectorNav no GPS2 lock"); return false; } return true; } /* get filter status. We don't know the meaning of the status bits yet, so assume all OK if we have GPS lock */ void AP_ExternalAHRS_VectorNav::get_filter_status(nav_filter_status &status) const { memset(&status, 0, sizeof(status)); if (last_pkt1 && last_pkt2) { status.flags.initalized = 1; } if (healthy() && last_pkt2) { status.flags.attitude = 1; status.flags.vert_vel = 1; status.flags.vert_pos = 1; const struct VN_packet2 &pkt2 = *last_pkt2; if (pkt2.GPS1Fix >= 3) { status.flags.horiz_vel = 1; status.flags.horiz_pos_rel = 1; status.flags.horiz_pos_abs = 1; status.flags.pred_horiz_pos_rel = 1; status.flags.pred_horiz_pos_abs = 1; status.flags.using_gps = 1; } } } // send an EKF_STATUS message to GCS void AP_ExternalAHRS_VectorNav::send_status_report(mavlink_channel_t chan) const { if (!last_pkt1) { return; } // prepare flags uint16_t flags = 0; nav_filter_status filterStatus; get_filter_status(filterStatus); if (filterStatus.flags.attitude) { flags |= EKF_ATTITUDE; } if (filterStatus.flags.horiz_vel) { flags |= EKF_VELOCITY_HORIZ; } if (filterStatus.flags.vert_vel) { flags |= EKF_VELOCITY_VERT; } if (filterStatus.flags.horiz_pos_rel) { flags |= EKF_POS_HORIZ_REL; } if (filterStatus.flags.horiz_pos_abs) { flags |= EKF_POS_HORIZ_ABS; } if (filterStatus.flags.vert_pos) { flags |= EKF_POS_VERT_ABS; } if (filterStatus.flags.terrain_alt) { flags |= EKF_POS_VERT_AGL; } if (filterStatus.flags.const_pos_mode) { flags |= EKF_CONST_POS_MODE; } if (filterStatus.flags.pred_horiz_pos_rel) { flags |= EKF_PRED_POS_HORIZ_REL; } if (filterStatus.flags.pred_horiz_pos_abs) { flags |= EKF_PRED_POS_HORIZ_ABS; } if (!filterStatus.flags.initalized) { flags |= EKF_UNINITIALIZED; } // send message const struct VN_packet1 &pkt1 = *(struct VN_packet1 *)last_pkt1; const float vel_gate = 5; const float pos_gate = 5; const float hgt_gate = 5; const float mag_var = 0; mavlink_msg_ekf_status_report_send(chan, flags, pkt1.velU/vel_gate, pkt1.posU/pos_gate, pkt1.posU/hgt_gate, mag_var, 0, 0); } #endif // HAL_EXTERNAL_AHRS_ENABLED