// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Sub.h" /* compass/motor interference calibration */ // setup_compassmot - sets compass's motor interference parameters uint8_t Sub::mavlink_compassmot(mavlink_channel_t chan) { int8_t comp_type; // throttle or current based compensation Vector3f compass_base[COMPASS_MAX_INSTANCES]; // compass vector when throttle is zero Vector3f motor_impact[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector scaled with throttle Vector3f motor_compensation[COMPASS_MAX_INSTANCES]; // final compensation to be stored to eeprom float throttle_pct; // throttle as a percentage 0.0 ~ 1.0 float throttle_pct_max = 0.0f; // maximum throttle reached (as a percentage 0~1.0) float current_amps_max = 0.0f; // maximum current reached float interference_pct[COMPASS_MAX_INSTANCES]; // interference as a percentage of total mag field (for reporting purposes only) uint32_t last_run_time; uint32_t last_send_time; bool updated = false; // have we updated the compensation vector at least once uint8_t command_ack_start = command_ack_counter; // exit immediately if we are already in compassmot if (ap.compass_mot) { // ignore restart messages return 1; }else{ ap.compass_mot = true; } // initialise output for (uint8_t i=0; icontrol_in != 0) { gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Throttle not zero"); ap.compass_mot = false; return 1; } // check we are landed if (!ap.land_complete) { gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Not landed"); ap.compass_mot = false; return 1; } // disable cpu failsafe failsafe_disable(); // initialise compass init_compass(); // default compensation type to use current if possible if (battery.has_current()) { comp_type = AP_COMPASS_MOT_COMP_CURRENT; }else{ comp_type = AP_COMPASS_MOT_COMP_THROTTLE; } // send back initial ACK mavlink_msg_command_ack_send(chan, MAV_CMD_PREFLIGHT_CALIBRATION,0); // flash leds AP_Notify::flags.esc_calibration = true; // warn user we are starting calibration gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Starting calibration"); // inform what type of compensation we are attempting if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) { gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Current"); } else{ gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Throttle"); } // disable throttle and battery failsafe g.failsafe_throttle = FS_THR_DISABLED; g.failsafe_battery_enabled = FS_BATT_DISABLED; // disable motor compensation compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED); for (uint8_t i=0; idelay(5); continue; } last_run_time = millis(); // read radio input read_radio(); // pass through throttle to motors motors.throttle_pass_through(channel_throttle->radio_in); // read some compass values compass.read(); // read current read_battery(); // calculate scaling for throttle throttle_pct = (float)channel_throttle->control_in / 1000.0f; throttle_pct = constrain_float(throttle_pct,0.0f,1.0f); // if throttle is near zero, update base x,y,z values if (throttle_pct <= 0.0f) { for (uint8_t i=0; i= 3.0f) { motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f; updated = true; } } } // calculate interference percentage at full throttle as % of total mag field if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) { for (uint8_t i=0; i 500) { last_send_time = AP_HAL::millis(); mavlink_msg_compassmot_status_send(chan, channel_throttle->control_in, battery.current_amps(), interference_pct[compass.get_primary()], motor_compensation[compass.get_primary()].x, motor_compensation[compass.get_primary()].y, motor_compensation[compass.get_primary()].z); } } // stop motors motors.output_min(); motors.armed(false); // set and save motor compensation if (updated) { compass.motor_compensation_type(comp_type); for (uint8_t i=0; i