/* * Location.cpp */ #include "Location.h" #include #include /// constructors Location::Location() { zero(); } const Location definitely_zero{}; bool Location::is_zero(void) const { return !memcmp(this, &definitely_zero, sizeof(*this)); } void Location::zero(void) { memset(this, 0, sizeof(*this)); } // Construct location using position (NEU) from ekf_origin for the given altitude frame Location::Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame) { // make sure we know what size the Location object is: ASSERT_STORAGE_SIZE(Location, 16); zero(); lat = latitude; lng = longitude; set_alt_cm(alt_in_cm, frame); } #if AP_AHRS_ENABLED Location::Location(const Vector3f &ekf_offset_neu, AltFrame frame) { zero(); // store alt and alt frame set_alt_cm(ekf_offset_neu.z, frame); // calculate lat, lon Location ekf_origin; if (AP::ahrs().get_origin(ekf_origin)) { lat = ekf_origin.lat; lng = ekf_origin.lng; offset(ekf_offset_neu.x * 0.01, ekf_offset_neu.y * 0.01); } } #endif // AP_AHRS_ENABLED void Location::set_alt_cm(int32_t alt_cm, AltFrame frame) { alt = alt_cm; relative_alt = false; terrain_alt = false; origin_alt = false; switch (frame) { case AltFrame::ABSOLUTE: // do nothing break; case AltFrame::ABOVE_HOME: relative_alt = true; break; case AltFrame::ABOVE_ORIGIN: origin_alt = true; break; case AltFrame::ABOVE_TERRAIN: // we mark it as a relative altitude, as it doesn't have // home alt added relative_alt = true; terrain_alt = true; break; } } // converts altitude to new frame bool Location::change_alt_frame(AltFrame desired_frame) { int32_t new_alt_cm; if (!get_alt_cm(desired_frame, new_alt_cm)) { return false; } set_alt_cm(new_alt_cm, desired_frame); return true; } // get altitude frame Location::AltFrame Location::get_alt_frame() const { if (terrain_alt) { return AltFrame::ABOVE_TERRAIN; } if (origin_alt) { return AltFrame::ABOVE_ORIGIN; } if (relative_alt) { return AltFrame::ABOVE_HOME; } return AltFrame::ABSOLUTE; } /// get altitude in desired frame bool Location::get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (!initialised()) { AP_HAL::panic("Should not be called on invalid location: Location cannot be (0, 0, 0)"); } #endif Location::AltFrame frame = get_alt_frame(); // shortcut if desired and underlying frame are the same if (desired_frame == frame) { ret_alt_cm = alt; return true; } // check for terrain altitude float alt_terr_cm = 0; if (frame == AltFrame::ABOVE_TERRAIN || desired_frame == AltFrame::ABOVE_TERRAIN) { #if AP_TERRAIN_AVAILABLE AP_Terrain *terrain = AP::terrain(); if (terrain == nullptr) { return false; } if (!terrain->height_amsl(*this, alt_terr_cm)) { return false; } // convert terrain alt to cm alt_terr_cm *= 100.0f; #else return false; #endif } // convert alt to absolute int32_t alt_abs = 0; switch (frame) { case AltFrame::ABSOLUTE: alt_abs = alt; break; case AltFrame::ABOVE_HOME: #if AP_AHRS_ENABLED if (!AP::ahrs().home_is_set()) { return false; } alt_abs = alt + AP::ahrs().get_home().alt; #else return false; #endif // AP_AHRS_ENABLED break; case AltFrame::ABOVE_ORIGIN: #if AP_AHRS_ENABLED { // fail if we cannot get ekf origin Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } alt_abs = alt + ekf_origin.alt; } break; #else return false; #endif // AP_AHRS_ENABLED case AltFrame::ABOVE_TERRAIN: alt_abs = alt + alt_terr_cm; break; } // convert absolute to desired frame switch (desired_frame) { case AltFrame::ABSOLUTE: ret_alt_cm = alt_abs; return true; case AltFrame::ABOVE_HOME: #if AP_AHRS_ENABLED if (!AP::ahrs().home_is_set()) { return false; } ret_alt_cm = alt_abs - AP::ahrs().get_home().alt; #else return false; #endif // AP_AHRS_ENABLED return true; case AltFrame::ABOVE_ORIGIN: #if AP_AHRS_ENABLED { // fail if we cannot get ekf origin Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } ret_alt_cm = alt_abs - ekf_origin.alt; return true; } #else return false; #endif // AP_AHRS_ENABLED case AltFrame::ABOVE_TERRAIN: ret_alt_cm = alt_abs - alt_terr_cm; return true; } return false; // LCOV_EXCL_LINE - not reachable } bool Location::get_alt_m(AltFrame desired_frame, float &ret_alt) const { int32_t ret_alt_cm; if (!get_alt_cm(desired_frame, ret_alt_cm)) { return false; } ret_alt = ret_alt_cm * 0.01; return true; } #if AP_AHRS_ENABLED bool Location::get_vector_xy_from_origin_NE(Vector2f &vec_ne) const { Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } vec_ne.x = (lat-ekf_origin.lat) * LATLON_TO_CM; vec_ne.y = diff_longitude(lng,ekf_origin.lng) * LATLON_TO_CM * longitude_scale((lat+ekf_origin.lat)/2); return true; } bool Location::get_vector_from_origin_NEU(Vector3f &vec_neu) const { // convert lat, lon if (!get_vector_xy_from_origin_NE(vec_neu.xy())) { return false; } // convert altitude int32_t alt_above_origin_cm = 0; if (!get_alt_cm(AltFrame::ABOVE_ORIGIN, alt_above_origin_cm)) { return false; } vec_neu.z = alt_above_origin_cm; return true; } #endif // AP_AHRS_ENABLED // return horizontal distance in meters between two locations ftype Location::get_distance(const Location &loc2) const { ftype dlat = (ftype)(loc2.lat - lat); ftype dlng = ((ftype)diff_longitude(loc2.lng,lng)) * longitude_scale((lat+loc2.lat)/2); return norm(dlat, dlng) * LOCATION_SCALING_FACTOR; } // return the altitude difference in meters taking into account alt frame. bool Location::get_alt_distance(const Location &loc2, ftype &distance) const { int32_t alt1, alt2; if (!get_alt_cm(AltFrame::ABSOLUTE, alt1) || !loc2.get_alt_cm(AltFrame::ABSOLUTE, alt2)) { return false; } distance = (alt1 - alt2) * 0.01; return true; } /* return the distance in meters in North/East plane as a N/E vector from loc1 to loc2 */ Vector2f Location::get_distance_NE(const Location &loc2) const { return Vector2f((loc2.lat - lat) * LOCATION_SCALING_FACTOR, diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((loc2.lat+lat)/2)); } // return the distance in meters in North/East/Down plane as a N/E/D vector to loc2, NOT CONSIDERING ALT FRAME! Vector3f Location::get_distance_NED(const Location &loc2) const { return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR, diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2), (alt - loc2.alt) * 0.01); } // return the distance in meters in North/East/Down plane as a N/E/D vector to loc2 Vector3d Location::get_distance_NED_double(const Location &loc2) const { return Vector3d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR), diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2), (alt - loc2.alt) * 0.01); } Vector2d Location::get_distance_NE_double(const Location &loc2) const { return Vector2d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR), diff_longitude(loc2.lng,lng) * double(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2)); } Vector2F Location::get_distance_NE_ftype(const Location &loc2) const { return Vector2F((loc2.lat - lat) * ftype(LOCATION_SCALING_FACTOR), diff_longitude(loc2.lng,lng) * ftype(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2)); } // extrapolate latitude/longitude given distances (in meters) north and east void Location::offset_latlng(int32_t &lat, int32_t &lng, ftype ofs_north, ftype ofs_east) { const int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV; const int64_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(lat+dlat/2); lat += dlat; lat = limit_lattitude(lat); lng = wrap_longitude(dlng+lng); } // extrapolate latitude/longitude given distances (in meters) north and east void Location::offset(ftype ofs_north, ftype ofs_east) { offset_latlng(lat, lng, ofs_north, ofs_east); } // extrapolate latitude/longitude given distances (in meters) north // and east. Note that this is metres, *even for the altitude*. void Location::offset(const Vector3p &ofs_ned) { offset_latlng(lat, lng, ofs_ned.x, ofs_ned.y); alt += -ofs_ned.z * 100; // m -> cm } /* * extrapolate latitude/longitude given bearing and distance * Note that this function is accurate to about 1mm at a distance of * 100m. This function has the advantage that it works in relative * positions, so it keeps the accuracy even when dealing with small * distances and floating point numbers */ void Location::offset_bearing(ftype bearing_deg, ftype distance) { const ftype ofs_north = cosF(radians(bearing_deg)) * distance; const ftype ofs_east = sinF(radians(bearing_deg)) * distance; offset(ofs_north, ofs_east); } // extrapolate latitude/longitude given bearing, pitch and distance void Location::offset_bearing_and_pitch(ftype bearing_deg, ftype pitch_deg, ftype distance) { const ftype ofs_north = cosF(radians(pitch_deg)) * cosF(radians(bearing_deg)) * distance; const ftype ofs_east = cosF(radians(pitch_deg)) * sinF(radians(bearing_deg)) * distance; offset(ofs_north, ofs_east); const int32_t dalt = sinF(radians(pitch_deg)) * distance *100.0f; alt += dalt; } ftype Location::longitude_scale(int32_t lat) { ftype scale = cosF(lat * (1.0e-7 * DEG_TO_RAD)); return MAX(scale, 0.01); } /* * convert invalid waypoint with useful data. return true if location changed */ bool Location::sanitize(const Location &defaultLoc) { bool has_changed = false; // convert lat/lng=0 to mean current point if (lat == 0 && lng == 0) { lat = defaultLoc.lat; lng = defaultLoc.lng; has_changed = true; } // convert relative alt=0 to mean current alt if (alt == 0 && relative_alt) { int32_t defaultLoc_alt; if (defaultLoc.get_alt_cm(get_alt_frame(), defaultLoc_alt)) { alt = defaultLoc_alt; has_changed = true; } } // limit lat/lng to appropriate ranges if (!check_latlng()) { lat = defaultLoc.lat; lng = defaultLoc.lng; has_changed = true; } return has_changed; } // return bearing in radians from location to loc2, return is 0 to 2*Pi ftype Location::get_bearing(const Location &loc2) const { const int32_t off_x = diff_longitude(loc2.lng,lng); const int32_t off_y = (loc2.lat - lat) / loc2.longitude_scale((lat+loc2.lat)/2); ftype bearing = (M_PI*0.5) + atan2F(-off_y, off_x); if (bearing < 0) { bearing += 2*M_PI; } return bearing; } /* return true if lat and lng match. Ignores altitude and options */ bool Location::same_latlon_as(const Location &loc2) const { return (lat == loc2.lat) && (lng == loc2.lng); } bool Location::same_alt_as(const Location &loc2) const { // fast path if the altitude frame is the same if (this->get_alt_frame() == loc2.get_alt_frame()) { return this->alt == loc2.alt; } ftype alt_diff; bool have_diff = this->get_alt_distance(loc2, alt_diff); const ftype tolerance = FLT_EPSILON; return have_diff && (fabsF(alt_diff) < tolerance); } // return true when lat and lng are within range bool Location::check_latlng() const { return check_lat(lat) && check_lng(lng); } // see if location is past a line perpendicular to // the line between point1 and point2 and passing through point2. // If point1 is our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool Location::past_interval_finish_line(const Location &point1, const Location &point2) const { return this->line_path_proportion(point1, point2) >= 1.0f; } /* return the proportion we are along the path from point1 to point2, along a line parallel to point1<->point2. This will be more than 1 if we have passed point2 */ float Location::line_path_proportion(const Location &point1, const Location &point2) const { const Vector2f vec1 = point1.get_distance_NE(point2); const Vector2f vec2 = point1.get_distance_NE(*this); const ftype dsquared = sq(vec1.x) + sq(vec1.y); if (dsquared < 0.001f) { // the two points are very close together return 1.0f; } return (vec1 * vec2) / dsquared; } /* wrap longitude for -180e7 to 180e7 */ int32_t Location::wrap_longitude(int64_t lon) { if (lon > 1800000000L) { lon = int32_t(lon-3600000000LL); } else if (lon < -1800000000L) { lon = int32_t(lon+3600000000LL); } return int32_t(lon); } /* get lon1-lon2, wrapping at -180e7 to 180e7 */ int32_t Location::diff_longitude(int32_t lon1, int32_t lon2) { if ((lon1 & 0x80000000) == (lon2 & 0x80000000)) { // common case of same sign return lon1 - lon2; } int64_t dlon = int64_t(lon1)-int64_t(lon2); if (dlon > 1800000000LL) { dlon -= 3600000000LL; } else if (dlon < -1800000000LL) { dlon += 3600000000LL; } return int32_t(dlon); } /* limit latitude to -90e7 to 90e7 */ int32_t Location::limit_lattitude(int32_t lat) { if (lat > 900000000L) { lat = 1800000000LL - lat; } else if (lat < -900000000L) { lat = -(1800000000LL + lat); } return lat; } // update altitude and alt-frame base on this location's horizontal position between point1 and point2 // this location's lat,lon is used to calculate the alt of the closest point on the line between point1 and point2 // origin and destination's altitude frames must be the same // this alt-frame will be updated to match the destination alt frame void Location::linearly_interpolate_alt(const Location &point1, const Location &point2) { // new target's distance along the original track and then linear interpolate between the original origin and destination altitudes set_alt_cm(point1.alt + (point2.alt - point1.alt) * constrain_float(line_path_proportion(point1, point2), 0.0f, 1.0f), point2.get_alt_frame()); }