/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main Rover class, containing all vehicle specific state */ #pragma once #include #include // Libraries #include #include #include #include #include // interface and maths for accelerometer calibration #include // ArduPilot Mega DCM Library #include // needed for AHRS build #include #include // Battery monitor library #include #include #include #include #include // Camera triggering #include // ArduPilot Mega Magnetometer Library #include // Compass declination library #include // ArduPilot GPS library #include // Inertial Sensor (uncalibated IMU) Library #include #include // ArduPilot Mega Vector/Matrix math Library #include // Mission command library #include // Camera/Antenna mount #include #include #include #include // Notify library #include // Optical Flow library #include #include // Range finder library #include // RC input mapping library #include // APM relay #include #include // RSSI Library #include // main loop scheduler #include // Serial manager library #include #include #include // statistics library #include #include // needed for AHRS build #include #include #include #include #include #include #include // Mode Filter from Filter library #include // Filter library - butterworth filter #include // Filter library #include #include // Mode Filter from Filter library #include #include #include #include #include #include #include #ifdef ENABLE_SCRIPTING #include #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif // Local modules #include "AP_MotorsUGV.h" #include "mode.h" #include "AP_Arming.h" // Configuration #include "config.h" #include "defines.h" #if ADVANCED_FAILSAFE == ENABLED #include "afs_rover.h" #endif #include "Parameters.h" #include "GCS_Mavlink.h" #include "GCS_Rover.h" #include "AP_Rally.h" #include "RC_Channel.h" // RC Channel Library class Rover : public AP_HAL::HAL::Callbacks { public: friend class GCS_MAVLINK_Rover; friend class Parameters; friend class ParametersG2; friend class AP_Rally_Rover; friend class AP_Arming_Rover; #if ADVANCED_FAILSAFE == ENABLED friend class AP_AdvancedFailsafe_Rover; #endif friend class GCS_Rover; friend class Mode; friend class ModeAcro; friend class ModeAuto; friend class ModeGuided; friend class ModeHold; friend class ModeLoiter; friend class ModeSteering; friend class ModeManual; friend class ModeRTL; friend class ModeSmartRTL; friend class ModeFollow; friend class ModeSimple; friend class RC_Channel_Rover; friend class RC_Channels_Rover; Rover(void); // HAL::Callbacks implementation. void setup(void) override; void loop(void) override; private: // must be the first AP_Param variable declared to ensure its // constructor runs before the constructors of the other AP_Param // variables AP_Param param_loader; // all settable parameters Parameters g; ParametersG2 g2; // main loop scheduler AP_Scheduler scheduler; // mapping between input channels RCMapper rcmap; // board specific config AP_BoardConfig BoardConfig; #if HAL_WITH_UAVCAN // board specific config for CAN bus AP_BoardConfig_CAN BoardConfig_CAN; #endif // primary control channels RC_Channel *channel_steer; RC_Channel *channel_throttle; RC_Channel *channel_lateral; AP_Logger logger; // sensor drivers AP_GPS gps; AP_Baro barometer; Compass compass; AP_InertialSensor ins; RangeFinder rangefinder{serial_manager}; AP_Button button; // flight modes convenience array AP_Int8 *modes; const uint8_t num_modes = 6; // AP_RPM Module AP_RPM rpm_sensor; // Inertial Navigation EKF #if AP_AHRS_NAVEKF_AVAILABLE NavEKF2 EKF2{&ahrs, rangefinder}; NavEKF3 EKF3{&ahrs, rangefinder}; AP_AHRS_NavEKF ahrs{EKF2, EKF3}; #else AP_AHRS_DCM ahrs; #endif // Arming/Disarming management class AP_Arming_Rover arming; AP_L1_Control L1_controller{ahrs, nullptr}; // selected navigation controller AP_Navigation *nav_controller; #if AP_AHRS_NAVEKF_AVAILABLE OpticalFlow optflow; #endif // RSSI AP_RSSI rssi; #if OSD_ENABLED == ENABLED AP_OSD osd; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL sitl; #endif AP_SerialManager serial_manager; // GCS handling GCS_Rover _gcs; // avoid using this; use gcs() GCS_Rover &gcs() { return _gcs; } // RC Channels: RC_Channels_Rover &rc() { return g2.rc_channels; } // relay support AP_Relay relay; AP_ServoRelayEvents ServoRelayEvents{relay}; // The rover's current location struct Location current_loc; // Camera #if CAMERA == ENABLED AP_Camera camera{&relay, MASK_LOG_CAMERA, current_loc, ahrs}; #endif // Camera/Antenna mount tracking and stabilisation stuff #if MOUNT == ENABLED // current_loc uses the baro/gps solution for altitude rather than gps only. AP_Mount camera_mount{current_loc}; #endif // true if initialisation has completed bool initialised; // This is the state of the flight control system // There are multiple states defined such as MANUAL, AUTO, ... Mode *control_mode; mode_reason_t control_mode_reason = MODE_REASON_INITIALISED; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch uint8_t oldSwitchPosition; // structure for holding failsafe state struct { uint8_t bits; // bit flags of failsafes that have started (but not necessarily triggered an action) uint32_t start_time; // start time of the earliest failsafe uint8_t triggered; // bit flags of failsafes that have triggered an action uint32_t last_valid_rc_ms; // system time of most recent RC input from pilot uint32_t last_heartbeat_ms; // system time of most recent heartbeat from ground station bool ekf; } failsafe; // notification object for LEDs, buzzers etc (parameter set to false disables external leds) AP_Notify notify; // true if we have a position estimate from AHRS bool have_position; // obstacle detection information struct { // have we detected an obstacle? uint8_t detected_count; float turn_angle; uint16_t rangefinder1_distance_cm; uint16_t rangefinder2_distance_cm; // time when we last detected an obstacle, in milliseconds uint32_t detected_time_ms; } obstacle; // range finder last update (used for DPTH logging) uint32_t rangefinder_last_reading_ms; // Ground speed // The amount current ground speed is below min ground speed. meters per second float ground_speed; // Battery Sensors AP_BattMonitor battery{MASK_LOG_CURRENT, FUNCTOR_BIND_MEMBER(&Rover::handle_battery_failsafe, void, const char*, const int8_t), _failsafe_priorities}; // true if the compass's initial location has been set bool compass_init_location; // IMU variables // The main loop execution time. Seconds // This is the time between calls to the DCM algorithm and is the Integration time for the gyros. float G_Dt; // flyforward timer uint32_t flyforward_start_ms; // true if pivoting (set by use_pivot_steering) bool pivot_steering_active; static const AP_Scheduler::Task scheduler_tasks[]; static const AP_Param::Info var_info[]; static const LogStructure log_structure[]; // time that rudder/steering arming has been running uint32_t rudder_arm_timer; // Store the time the last GPS message was received. uint32_t last_gps_msg_ms{0}; // last wheel encoder update times float wheel_encoder_last_angle_rad[WHEELENCODER_MAX_INSTANCES]; // distance in radians at time of last update to EKF float wheel_encoder_last_distance_m[WHEELENCODER_MAX_INSTANCES]; // distance in meters at time of last update to EKF (for reporting to GCS) uint32_t wheel_encoder_last_update_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder uint32_t wheel_encoder_last_ekf_update_ms; // system time of last encoder data push to EKF // True when we are doing motor test bool motor_test; ModeInitializing mode_initializing; ModeHold mode_hold; ModeManual mode_manual; ModeAcro mode_acro; ModeGuided mode_guided; ModeAuto mode_auto; ModeLoiter mode_loiter; ModeSteering mode_steering; ModeRTL mode_rtl; ModeSmartRTL mode_smartrtl; ModeFollow mode_follow; ModeSimple mode_simple; // cruise throttle and speed learning typedef struct { LowPassFilterFloat speed_filt = LowPassFilterFloat(2.0f); LowPassFilterFloat throttle_filt = LowPassFilterFloat(2.0f); uint32_t learn_start_ms; uint32_t log_count; } cruise_learn_t; cruise_learn_t cruise_learn; // sailboat variables enum Sailboat_Tack { TACK_PORT, TACK_STARBOARD }; struct { bool tacking; // true when sailboat is in the process of tacking to a new heading float tack_heading_rad; // target heading in radians while tacking in either acro or autonomous modes uint32_t auto_tack_request_ms; // system time user requested tack in autonomous modes uint32_t auto_tack_start_ms; // system time when tack was started in autonomous mode } sailboat; private: // APMrover2.cpp void stats_update(); void ahrs_update(); void gcs_failsafe_check(void); void update_logging1(void); void update_logging2(void); void one_second_loop(void); void update_GPS(void); void update_current_mode(void); void update_mission(void); // balance_bot.cpp void balancebot_pitch_control(float &throttle); bool is_balancebot() const; // commands.cpp bool set_home_to_current_location(bool lock) WARN_IF_UNUSED; bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED; void update_home(); // compat.cpp void delay(uint32_t ms); // crash_check.cpp void crash_check(); // cruise_learn.cpp void cruise_learn_start(); void cruise_learn_update(); void cruise_learn_complete(); void log_write_cruise_learn(); // ekf_check.cpp void ekf_check(); bool ekf_over_threshold(); bool ekf_position_ok(); void failsafe_ekf_event(); void failsafe_ekf_off_event(void); // failsafe.cpp void failsafe_trigger(uint8_t failsafe_type, bool on); void handle_battery_failsafe(const char* type_str, const int8_t action); #if ADVANCED_FAILSAFE == ENABLED void afs_fs_check(void); #endif // fence.cpp void fence_check(); // GCS_Mavlink.cpp void send_servo_out(mavlink_channel_t chan); void send_wheel_encoder_distance(mavlink_channel_t chan); // Log.cpp void Log_Write_Arm_Disarm(); void Log_Write_Attitude(); void Log_Write_Depth(); void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target); void Log_Write_Nav_Tuning(); void Log_Write_Sail(); void Log_Write_Startup(uint8_t type); void Log_Write_Steering(); void Log_Write_Throttle(); void Log_Write_Rangefinder(); void Log_Write_RC(void); void Log_Write_Vehicle_Startup_Messages(); void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page); void log_init(void); // mode.cpp Mode *mode_from_mode_num(enum Mode::Number num); // Parameters.cpp void load_parameters(void); // radio.cpp void set_control_channels(void); void init_rc_in(); void rudder_arm_disarm_check(); void read_radio(); void radio_failsafe_check(uint16_t pwm); bool trim_radio(); // sailboat.cpp void sailboat_update_mainsail(float desired_speed); float sailboat_get_VMG() const; void sailboat_handle_tack_request_acro(); float sailboat_get_tack_heading_rad() const; void sailboat_handle_tack_request_auto(); void sailboat_clear_tack(); bool sailboat_tacking() const; bool sailboat_use_indirect_route(float desired_heading_cd) const; float sailboat_calc_heading(float desired_heading_cd); // sensors.cpp void init_compass_location(void); void update_compass(void); void compass_save(void); void init_beacon(); void init_visual_odom(); void update_wheel_encoder(); void accel_cal_update(void); void read_rangefinders(void); void init_proximity(); void read_airspeed(); void rpm_update(void); // Steering.cpp bool use_pivot_steering_at_next_WP(float yaw_error_cd); bool use_pivot_steering(float yaw_error_cd); void set_servos(void); // system.cpp void init_ardupilot(); void startup_ground(void); void update_ahrs_flyforward(); bool set_mode(Mode &new_mode, mode_reason_t reason); bool mavlink_set_mode(uint8_t mode); void startup_INS_ground(void); void print_mode(AP_HAL::BetterStream *port, uint8_t mode); void notify_mode(const Mode *new_mode); uint8_t check_digital_pin(uint8_t pin); bool should_log(uint32_t mask); void change_arm_state(void); bool arm_motors(AP_Arming::Method method); bool disarm_motors(void); bool is_boat() const; enum Failsafe_Action { Failsafe_Action_None = 0, Failsafe_Action_RTL = 1, Failsafe_Action_Hold = 2, Failsafe_Action_SmartRTL = 3, Failsafe_Action_SmartRTL_Hold = 4, Failsafe_Action_Terminate = 5 }; static constexpr int8_t _failsafe_priorities[] = { Failsafe_Action_Terminate, Failsafe_Action_Hold, Failsafe_Action_RTL, Failsafe_Action_SmartRTL_Hold, Failsafe_Action_SmartRTL, Failsafe_Action_None, -1 // the priority list must end with a sentinel of -1 }; static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1, "_failsafe_priorities is missing the sentinel"); public: void mavlink_delay_cb(); void failsafe_check(); void update_soft_armed(); // Motor test void motor_test_output(); bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value); MAV_RESULT mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value, float timeout_sec); void motor_test_stop(); // frame type uint8_t get_frame_type() { return g2.frame_type.get(); } AP_WheelRateControl& get_wheel_rate_control() { return g2.wheel_rate_control; } // Simple mode float simple_sin_yaw; }; extern const AP_HAL::HAL& hal; extern Rover rover; using AP_HAL::millis; using AP_HAL::micros;