/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* multicopter frame simulator class */ #include "SIM_Frame.h" #include #include using namespace SITL; static Motor quad_plus_motors[] = { Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), }; static Motor quad_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), }; static Motor tiltquad_h_vectored_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1, -1, 0, 0, 7, 10, -90), Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, -1, 0, 0, 7, 10, -90), }; static Motor hexa_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_3,-120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_5, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3) }; static Motor hexax_motors[] = { Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_3, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_4, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_5, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_6,-150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4) }; static Motor octa_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_3, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_7, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_8, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3) }; static Motor octa_quad_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6) }; static Motor dodeca_hexa_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_4, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_8, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_9, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10), Motor(AP_MOTORS_MOT_11, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 11), Motor(AP_MOTORS_MOT_12, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 12) }; static Motor tri_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0), }; static Motor tilttri_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0), }; static Motor tilttri_vectored_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 7, 10, -90), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2) }; static Motor y6_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3) }; /* FireflyY6 is a Y6 with front motors tiltable using servo on channel 9 (output 8) */ static Motor firefly_motors[] = { Motor(AP_MOTORS_MOT_1, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_2, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_6, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6, -1, 0, 0, 6, 0, -90) }; /* table of supported frame types. String order is important for partial name matching */ static Frame supported_frames[] = { Frame("+", 4, quad_plus_motors), Frame("quad", 4, quad_plus_motors), Frame("copter", 4, quad_plus_motors), Frame("x", 4, quad_x_motors), Frame("tilthvec", 4, tiltquad_h_vectored_motors), Frame("hexax", 6, hexax_motors), Frame("hexa", 6, hexa_motors), Frame("octa-quad", 8, octa_quad_motors), Frame("octa", 8, octa_motors), Frame("dodeca-hexa", 12, dodeca_hexa_motors), Frame("tri", 3, tri_motors), Frame("tilttrivec",3, tilttri_vectored_motors), Frame("tilttri", 3, tilttri_motors), Frame("y6", 6, y6_motors), Frame("firefly", 6, firefly_motors) }; void Frame::init(float _mass, float hover_throttle, float _terminal_velocity, float _terminal_rotation_rate) { /* scaling from total motor power to Newtons. Allows the copter to hover against gravity when each motor is at hover_throttle */ thrust_scale = (_mass * GRAVITY_MSS) / (num_motors * hover_throttle); terminal_velocity = _terminal_velocity; terminal_rotation_rate = _terminal_rotation_rate; } /* find a frame by name */ Frame *Frame::find_frame(const char *name) { for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) { // do partial name matching to allow for frame variants if (strncasecmp(name, supported_frames[i].name, strlen(supported_frames[i].name)) == 0) { return &supported_frames[i]; } } return nullptr; } // calculate rotational and linear accelerations void Frame::calculate_forces(const Aircraft &aircraft, const Aircraft::sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel) { Vector3f thrust; // newtons for (uint8_t i=0; i 0) { // rotational air resistance const Vector3f &gyro = aircraft.get_gyro(); rot_accel.x -= gyro.x * radians(400.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(400.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; } if (terminal_velocity > 0) { // air resistance Vector3f air_resistance = -aircraft.get_velocity_air_ef() * (GRAVITY_MSS/terminal_velocity); body_accel += aircraft.get_dcm().transposed() * air_resistance; } // add some noise const float gyro_noise = radians(0.1); const float accel_noise = 0.3; const float noise_scale = thrust.length() / (thrust_scale * num_motors); rot_accel += Vector3f(aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1)) * gyro_noise * noise_scale; body_accel += Vector3f(aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1)) * accel_noise * noise_scale; } // calculate current and voltage void Frame::current_and_voltage(const Aircraft::sitl_input &input, float &voltage, float ¤t) { voltage = 0; current = 0; for (uint8_t i=0; i