#include "AP_Mount_Backend.h" #include <AP_AHRS/AP_AHRS.h> extern const AP_HAL::HAL& hal; // set_angle_targets - sets angle targets in degrees void AP_Mount_Backend::set_angle_targets(float roll, float tilt, float pan) { // set angle targets _angle_ef_target_rad.x = radians(roll); _angle_ef_target_rad.y = radians(tilt); _angle_ef_target_rad.z = radians(pan); // set the mode to mavlink targeting _frontend.set_mode(_instance, MAV_MOUNT_MODE_MAVLINK_TARGETING); } // set_roi_target - sets target location that mount should attempt to point towards void AP_Mount_Backend::set_roi_target(const struct Location &target_loc) { // set the target gps location _state._roi_target = target_loc; // set the mode to GPS tracking mode _frontend.set_mode(_instance, MAV_MOUNT_MODE_GPS_POINT); } // process MOUNT_CONFIGURE messages received from GCS. deprecated. void AP_Mount_Backend::handle_mount_configure(const mavlink_mount_configure_t &packet) { set_mode((MAV_MOUNT_MODE)packet.mount_mode); _state._stab_roll = packet.stab_roll; _state._stab_tilt = packet.stab_pitch; _state._stab_pan = packet.stab_yaw; } // process MOUNT_CONTROL messages received from GCS. deprecated. void AP_Mount_Backend::handle_mount_control(const mavlink_mount_control_t &packet) { control((int32_t)packet.input_a, (int32_t)packet.input_b, (int32_t)packet.input_c, _state._mode); } void AP_Mount_Backend::control(int32_t pitch_or_lat, int32_t roll_or_lon, int32_t yaw_or_alt, MAV_MOUNT_MODE mount_mode) { _frontend.set_mode(_instance, mount_mode); // interpret message fields based on mode switch (_frontend.get_mode(_instance)) { case MAV_MOUNT_MODE_RETRACT: case MAV_MOUNT_MODE_NEUTRAL: // do nothing with request if mount is retracted or in neutral position break; // set earth frame target angles from mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: set_angle_targets(roll_or_lon*0.01f, pitch_or_lat*0.01f, yaw_or_alt*0.01f); break; // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization case MAV_MOUNT_MODE_RC_TARGETING: // do nothing if pilot is controlling the roll, pitch and yaw break; // set lat, lon, alt position targets from mavlink message case MAV_MOUNT_MODE_GPS_POINT: { const Location target_location{ pitch_or_lat, roll_or_lon, yaw_or_alt, Location::AltFrame::ABOVE_HOME }; set_roi_target(target_location); break; } default: // do nothing break; } } void AP_Mount_Backend::rate_input_rad(float &out, const RC_Channel *chan, float min, float max) const { if ((chan == nullptr) || (chan->get_radio_in() == 0)) { return; } out += chan->norm_input_dz() * 0.0001f * _frontend._joystick_speed; out = constrain_float(out, radians(min*0.01f), radians(max*0.01f)); } // update_targets_from_rc - updates angle targets using input from receiver void AP_Mount_Backend::update_targets_from_rc() { const RC_Channel *roll_ch = rc().channel(_state._roll_rc_in - 1); const RC_Channel *tilt_ch = rc().channel(_state._tilt_rc_in - 1); const RC_Channel *pan_ch = rc().channel(_state._pan_rc_in - 1); // if joystick_speed is defined then pilot input defines a rate of change of the angle if (_frontend._joystick_speed) { // allow pilot position input to come directly from an RC_Channel rate_input_rad(_angle_ef_target_rad.x, roll_ch, _state._roll_angle_min, _state._roll_angle_max); rate_input_rad(_angle_ef_target_rad.y, tilt_ch, _state._tilt_angle_min, _state._tilt_angle_max); rate_input_rad(_angle_ef_target_rad.z, pan_ch, _state._pan_angle_min, _state._pan_angle_max); } else { // allow pilot rate input to come directly from an RC_Channel if ((roll_ch != nullptr) && (roll_ch->get_radio_in() != 0)) { _angle_ef_target_rad.x = angle_input_rad(roll_ch, _state._roll_angle_min, _state._roll_angle_max); } if ((tilt_ch != nullptr) && (tilt_ch->get_radio_in() != 0)) { _angle_ef_target_rad.y = angle_input_rad(tilt_ch, _state._tilt_angle_min, _state._tilt_angle_max); } if ((pan_ch != nullptr) && (pan_ch->get_radio_in() != 0)) { _angle_ef_target_rad.z = angle_input_rad(pan_ch, _state._pan_angle_min, _state._pan_angle_max); } } } // returns the angle (radians) that the RC_Channel input is receiving float AP_Mount_Backend::angle_input_rad(const RC_Channel* rc, int16_t angle_min, int16_t angle_max) { return radians(((rc->norm_input() + 1.0f) * 0.5f * (angle_max - angle_min) + angle_min)*0.01f); } // calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target void AP_Mount_Backend::calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan, bool relative_pan) { float GPS_vector_x = (target.lng-_frontend._current_loc.lng)*cosf(ToRad((_frontend._current_loc.lat+target.lat)*0.00000005f))*0.01113195f; float GPS_vector_y = (target.lat-_frontend._current_loc.lat)*0.01113195f; float GPS_vector_z = (target.alt-_frontend._current_loc.alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter). float target_distance = 100.0f*norm(GPS_vector_x, GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters. // initialise all angles to zero angles_to_target_rad.zero(); // tilt calcs if (calc_tilt) { angles_to_target_rad.y = atan2f(GPS_vector_z, target_distance); } // pan calcs if (calc_pan) { // calc absolute heading and then onvert to vehicle relative yaw angles_to_target_rad.z = atan2f(GPS_vector_x, GPS_vector_y); if (relative_pan) { angles_to_target_rad.z = wrap_PI(angles_to_target_rad.z - AP::ahrs().yaw); } } }