/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "AP_Proximity_MAV.h"
#if HAL_PROXIMITY_ENABLED
#include
#include
#include
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAV_TIMEOUT_MS 500 // distance messages must arrive within this many milliseconds
#define PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS 50 // obstacles will be transferred from temp boundary to actual boundary if mavlink message does not arrive within this many milliseconds
// update the state of the sensor
void AP_Proximity_MAV::update(void)
{
// check for timeout and set health status
if ((_last_update_ms == 0 || (AP_HAL::millis() - _last_update_ms > PROXIMITY_MAV_TIMEOUT_MS)) &&
(_last_upward_update_ms == 0 || (AP_HAL::millis() - _last_upward_update_ms > PROXIMITY_MAV_TIMEOUT_MS))) {
set_status(AP_Proximity::Status::NoData);
} else {
set_status(AP_Proximity::Status::Good);
}
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_MAV::get_upward_distance(float &distance) const
{
if ((_last_upward_update_ms != 0) && (AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_MAV_TIMEOUT_MS)) {
distance = _distance_upward;
return true;
}
return false;
}
// handle mavlink messages
void AP_Proximity_MAV::handle_msg(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case (MAVLINK_MSG_ID_DISTANCE_SENSOR):
handle_distance_sensor_msg(msg);
break;
case (MAVLINK_MSG_ID_OBSTACLE_DISTANCE):
handle_obstacle_distance_msg(msg);
break;
case (MAVLINK_MSG_ID_OBSTACLE_DISTANCE_3D):
handle_obstacle_distance_3d_msg(msg);
break;
}
}
// handle mavlink DISTANCE_SENSOR messages
void AP_Proximity_MAV::handle_distance_sensor_msg(const mavlink_message_t &msg)
{
mavlink_distance_sensor_t packet;
mavlink_msg_distance_sensor_decode(&msg, &packet);
// store distance to appropriate sector based on orientation field
if (packet.orientation <= MAV_SENSOR_ROTATION_YAW_315) {
const uint32_t previous_sys_time = _last_update_ms;
_last_update_ms = AP_HAL::millis();
// time_diff will check if the new message arrived significantly later than the last message
const uint32_t time_diff = _last_update_ms - previous_sys_time;
const uint32_t previous_msg_timestamp = _last_msg_update_timestamp_ms;
_last_msg_update_timestamp_ms = packet.time_boot_ms;
// we will add on to the last fence if the time stamp is the same
// provided we got the new obstacle in less than PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS
if ((previous_msg_timestamp != _last_msg_update_timestamp_ms) || (time_diff > PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS)) {
// push data from temp boundary to the main 3-D proximity boundary
temp_boundary.update_3D_boundary(boundary);
// clear temp boundary for new data
temp_boundary.reset();
}
// store in meters
const float distance = packet.current_distance * 0.01f;
const uint8_t sector = packet.orientation;
// get the face for this sector
const float yaw_angle_deg = sector * 45;
const AP_Proximity_Boundary_3D::Face face = boundary.get_face(yaw_angle_deg);
_distance_min = packet.min_distance * 0.01f;
_distance_max = packet.max_distance * 0.01f;
const bool in_range = distance <= _distance_max && distance >= _distance_min;
if (in_range && !ignore_reading(yaw_angle_deg, distance, false)) {
temp_boundary.add_distance(face, yaw_angle_deg, distance);
// update OA database
database_push(yaw_angle_deg, distance);
}
}
// store upward distance
if (packet.orientation == MAV_SENSOR_ROTATION_PITCH_90) {
_distance_upward = packet.current_distance * 0.01f;
_last_upward_update_ms = AP_HAL::millis();
}
return;
}
// handle mavlink OBSTACLE_DISTANCE messages
void AP_Proximity_MAV::handle_obstacle_distance_msg(const mavlink_message_t &msg)
{
mavlink_obstacle_distance_t packet;
mavlink_msg_obstacle_distance_decode(&msg, &packet);
// check increment (message's sector width)
float increment;
if (!is_zero(packet.increment_f)) {
// use increment float
increment = packet.increment_f;
} else if (packet.increment != 0) {
// use increment uint8_t
increment = packet.increment;
} else {
// invalid increment
return;
}
const uint8_t total_distances = MIN(((360.0f / fabsf(increment)) + 0.5f), MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN); // usually 72
// set distance min and max
_distance_min = packet.min_distance * 0.01f;
_distance_max = packet.max_distance * 0.01f;
_last_update_ms = AP_HAL::millis();
// get user configured yaw correction from front end
const float param_yaw_offset = constrain_float(frontend.get_yaw_correction(state.instance), -360.0f, +360.0f);
const float yaw_correction = wrap_360(param_yaw_offset + packet.angle_offset);
if (frontend.get_orientation(state.instance) != 0) {
increment *= -1;
}
Vector3f current_pos;
Matrix3f body_to_ned;
const bool database_ready = database_prepare_for_push(current_pos, body_to_ned);
// variables to calculate closest angle and distance for each face
AP_Proximity_Boundary_3D::Face face;
float face_distance = FLT_MAX;
float face_yaw_deg = 0.0f;
bool face_distance_valid = false;
// reset this boundary to fill with new data
boundary.reset();
// iterate over message's sectors
for (uint8_t j = 0; j < total_distances; j++) {
const uint16_t distance_cm = packet.distances[j];
const float packet_distance_m = distance_cm * 0.01f;
const float mid_angle = wrap_360((float)j * increment + yaw_correction);
const bool range_check = distance_cm == 0 || distance_cm == 65535 || distance_cm < packet.min_distance ||
distance_cm > packet.max_distance;
if (range_check || ignore_reading(mid_angle, packet_distance_m, false)) {
// sanity check failed, ignore this distance value
continue;
}
// get face for this latest reading
AP_Proximity_Boundary_3D::Face latest_face = boundary.get_face(mid_angle);
if (latest_face != face) {
// store previous face
if (face_distance_valid) {
boundary.set_face_attributes(face, face_yaw_deg, face_distance);
} else {
boundary.reset_face(face);
}
// init for latest face
face = latest_face;
face_distance_valid = false;
}
// update minimum distance found so far
if (!face_distance_valid || (packet_distance_m < face_distance)) {
face_yaw_deg = mid_angle;
face_distance = packet_distance_m;
face_distance_valid = true;
}
// update Object Avoidance database with Earth-frame point
if (database_ready) {
database_push(mid_angle, packet_distance_m, _last_update_ms, current_pos, body_to_ned);
}
}
// process the last face
if (face_distance_valid) {
boundary.set_face_attributes(face, face_yaw_deg, face_distance);
} else {
boundary.reset_face(face);
}
return;
}
// handle mavlink OBSTACLE_DISTANCE_3D messages
void AP_Proximity_MAV::handle_obstacle_distance_3d_msg(const mavlink_message_t &msg)
{
mavlink_obstacle_distance_3d_t packet;
mavlink_msg_obstacle_distance_3d_decode(&msg, &packet);
const uint32_t previous_sys_time = _last_update_ms;
_last_update_ms = AP_HAL::millis();
// time_diff will check if the new message arrived significantly later than the last message
const uint32_t time_diff = _last_update_ms - previous_sys_time;
const uint32_t previous_msg_timestamp = _last_msg_update_timestamp_ms;
_last_msg_update_timestamp_ms = packet.time_boot_ms;
if (packet.frame != MAV_FRAME_BODY_FRD) {
// we do not support this frame of reference yet
return;
}
if ((previous_msg_timestamp != _last_msg_update_timestamp_ms) || (time_diff > PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS)) {
// push data from temp boundary to the main 3-D proximity boundary because a new timestamp has arrived
temp_boundary.update_3D_boundary(boundary);
// clear temp boundary for new data
temp_boundary.reset();
}
_distance_min = packet.min_distance;
_distance_max = packet.max_distance;
Vector3f current_pos;
Matrix3f body_to_ned;
const bool database_ready = database_prepare_for_push(current_pos, body_to_ned);
const Vector3f obstacle_FRD(packet.x, packet.y, packet.z);
const float obstacle_distance = obstacle_FRD.length();
if (obstacle_distance < _distance_min || obstacle_distance > _distance_max || is_zero(obstacle_distance)) {
// message isn't healthy
return;
}
// convert to FRU
const Vector3f obstacle(obstacle_FRD.x, obstacle_FRD.y, obstacle_FRD.z * -1.0f);
// extract yaw and pitch from Obstacle Vector
const float yaw = wrap_360(degrees(atan2f(obstacle.y, obstacle.x)));
const float pitch = wrap_180(degrees(M_PI_2 - atan2f(obstacle.xy().length(), obstacle.z)));
if (ignore_reading(pitch, yaw, obstacle_distance, false)) {
// obstacle is probably near ground or out of range
return;
}
// allot to correct layer and sector based on calculated pitch and yaw
const AP_Proximity_Boundary_3D::Face face = boundary.get_face(pitch, yaw);
temp_boundary.add_distance(face, pitch, yaw, obstacle.length());
if (database_ready) {
database_push(yaw, pitch, obstacle.length(),_last_update_ms, current_pos, body_to_ned);
}
return;
}
#endif // HAL_PROXIMITY_ENABLED