/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * auto_calibration.cpp - airspeed auto calibration * Algorithm by Paul Riseborough * */ #include #include #include #include extern const AP_HAL::HAL& hal; // constructor - fill in all the initial values Airspeed_Calibration::Airspeed_Calibration(const AP_SpdHgtControl::AircraftParameters &parms) : P(100, 0, 0, 0, 100, 0, 0, 0, 0.000001f), Q0(0.01f), Q1(0.0000005f), state(0, 0, 0), DT(1), aparm(parms) { } /* initialise the ratio */ void Airspeed_Calibration::init(float initial_ratio) { state.z = 1.0 / sqrtf(initial_ratio); } /* update the state of the airspeed calibration - needs to be called once a second On an AVR2560 this costs 1.9 milliseconds per call */ float Airspeed_Calibration::update(float airspeed, const Vector3f &vg) { // Perform the covariance prediction // Q is a diagonal matrix so only need to add three terms in // C code implementation // P = P + Q; P.a.x += Q0; P.b.y += Q0; P.c.z += Q1; // Perform the predicted measurement using the current state estimates // No state prediction required because states are assumed to be time // invariant plus process noise // Ignore vertical wind component float TAS_pred = state.z * sqrtf(sq(vg.x - state.x) + sq(vg.y - state.y) + sq(vg.z)); float TAS_mea = airspeed; // Calculate the observation Jacobian H_TAS float SH1 = sq(vg.y - state.y) + sq(vg.x - state.x); if (SH1 < 0.000001f) { // avoid division by a small number return state.z; } float SH2 = 1/sqrt(SH1); // observation Jacobian Vector3f H_TAS( -(state.z*SH2*(2*vg.x - 2*state.x))/2, -(state.z*SH2*(2*vg.y - 2*state.y))/2, 1/SH2); // Calculate the fusion innovaton covariance assuming a TAS measurement // noise of 1.0 m/s // S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1] Vector3f PH = P * H_TAS; float S = H_TAS * PH + 1.0f; // Calculate the Kalman gain // [3 x 3] * [3 x 1] / [1 x 1] Vector3f KG = PH / S; // Update the states state += KG*(TAS_mea - TAS_pred); // [3 x 1] + [3 x 1] * [1 x 1] // Update the covariance matrix Vector3f HP2 = H_TAS * P; P -= KG.mul_rowcol(HP2); // force symmetry on the covariance matrix - necessary due to rounding // errors float P12 = 0.5f * (P.a.y + P.b.x); float P13 = 0.5f * (P.a.z + P.c.x); float P23 = 0.5f * (P.b.z + P.c.y); P.a.y = P.b.x = P12; P.a.z = P.c.x = P13; P.b.z = P.c.y = P23; // Constrain diagonals to be non-negative - protects against rounding errors P.a.x = max(P.a.x, 0.0f); P.b.y = max(P.b.y, 0.0f); P.c.z = max(P.c.z, 0.0f); state.x = constrain_float(state.x, -aparm.airspeed_max, aparm.airspeed_max); state.y = constrain_float(state.y, -aparm.airspeed_max, aparm.airspeed_max); state.z = constrain_float(state.z, 0.5f, 1.0f); return state.z; } /* called once a second to do calibration update */ void AP_Airspeed::update_calibration(const Vector3f &vground) { if (!_autocal) { // auto-calibration not enabled return; } // calculate true airspeed, assuming a airspeed ratio of 1.0 float dpress = get_differential_pressure(); float true_airspeed = sqrtf(dpress) * _EAS2TAS; float ratio = _calibration.update(true_airspeed, vground); if (isnan(ratio) || isinf(ratio)) { return; } // this constrains the resulting ratio to between 1.0 and 4.0 ratio = constrain_float(ratio, 0.5f, 1.0f); _ratio.set(1/sq(ratio)); if (_counter > 60) { if (_last_saved_ratio > 1.05f*_ratio || _last_saved_ratio < 0.95f*_ratio) { _ratio.save(); _last_saved_ratio = _ratio; _counter = 0; } } else { _counter++; } } // log airspeed calibration data to MAVLink void AP_Airspeed::log_mavlink_send(mavlink_channel_t chan, const Vector3f &vground) { mavlink_msg_airspeed_autocal_send(chan, vground.x, vground.y, vground.z, get_differential_pressure(), _EAS2TAS, _ratio.get(), _calibration.state.x, _calibration.state.y, _calibration.state.z, _calibration.P.a.x, _calibration.P.b.y, _calibration.P.c.z); }