#include #if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2) #include #include #include #include #include "RCInput.h" #include "utility/ISRRegistry.h" using namespace AP_HAL; using namespace AP_HAL_AVR; extern const HAL& hal; /* private variables to communicate with input capture isr */ volatile uint16_t APM2RCInput::_pulse_capt[AVR_RC_INPUT_NUM_CHANNELS] = {0}; volatile uint8_t APM2RCInput::_valid = 0; /* private callback for input capture ISR */ void APM2RCInput::_timer5_capt_cb(void) { static uint16_t icr5_prev; static uint8_t channel_ctr; const uint16_t icr5_current = ICR5; uint16_t pulse_width; if (icr5_current < icr5_prev) { /* ICR5 rolls over at TOP=40000 */ pulse_width = icr5_current + 40000 - icr5_prev; } else { pulse_width = icr5_current - icr5_prev; } if (pulse_width > 8000) { /* sync pulse detected */ channel_ctr = 0; } else { if (channel_ctr < AVR_RC_INPUT_NUM_CHANNELS) { _pulse_capt[channel_ctr] = pulse_width; channel_ctr++; if (channel_ctr == AVR_RC_INPUT_NUM_CHANNELS) { _valid = AVR_RC_INPUT_NUM_CHANNELS; } } } icr5_prev = icr5_current; } void APM2RCInput::init(void* _isrregistry) { ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry; isrregistry->register_signal(ISR_REGISTRY_TIMER5_CAPT, _timer5_capt_cb); /* initialize overrides */ clear_overrides(); /* Arduino pin 48 is ICP5 / PL1, timer 5 input capture */ hal.gpio->pinMode(48, GPIO_INPUT); /** * WGM: 1 1 1 1. Fast WPM, TOP is in OCR5A * COM all disabled * CS51: prescale by 8 => 0.5us tick * ICES5: input capture on rising edge * OCR5A: 40000, 0.5us tick => 2ms period / 50hz freq for outbound * fast PWM. */ TCCR5A = _BV(WGM50) | _BV(WGM51); TCCR5B = _BV(WGM53) | _BV(WGM52) | _BV(CS51) | _BV(ICES5); OCR5A = 40000; /* OCR5B and OCR5C will be used by RCOutput_APM2. init to nil output */ OCR5B = 0xFFFF; OCR5C = 0xFFFF; /* Enable input capture interrupt */ TIMSK5 |= _BV(ICIE5); } uint8_t APM2RCInput::valid() { return _valid; } /* constrain captured pulse to be between min and max pulsewidth. */ static inline uint16_t constrain_pulse(uint16_t p) { if (p > RC_INPUT_MAX_PULSEWIDTH) return RC_INPUT_MAX_PULSEWIDTH; if (p < RC_INPUT_MIN_PULSEWIDTH) return RC_INPUT_MIN_PULSEWIDTH; return p; } uint16_t APM2RCInput::read(uint8_t ch) { /* constrain ch */ if (ch >= AVR_RC_INPUT_NUM_CHANNELS) return 0; /* grab channel from isr's memory in critical section*/ cli(); uint16_t capt = _pulse_capt[ch]; sei(); _valid = 0; /* scale _pulse_capt from 0.5us units to 1us units. */ uint16_t pulse = constrain_pulse(capt >> 1); /* Check for override */ uint16_t over = _override[ch]; return (over == 0) ? pulse : over; } uint8_t APM2RCInput::read(uint16_t* periods, uint8_t len) { /* constrain len */ if (len > AVR_RC_INPUT_NUM_CHANNELS) { len = AVR_RC_INPUT_NUM_CHANNELS; } /* grab channels from isr's memory in critical section */ cli(); for (int i = 0; i < len; i++) { periods[i] = _pulse_capt[i]; } sei(); /* Outside of critical section, do the math (in place) to scale and * constrain the pulse. */ for (int i = 0; i < len; i++) { /* scale _pulse_capt from 0.5us units to 1us units. */ periods[i] = constrain_pulse(periods[i] >> 1); /* check for override */ if (_override[i] != 0) { periods[i] = _override[i]; } } uint8_t v = _valid; _valid = 0; return v; } bool APM2RCInput::set_overrides(int16_t *overrides, uint8_t len) { bool res = false; for (int i = 0; i < len; i++) { res |= set_override(i, overrides[i]); } return res; } bool APM2RCInput::set_override(uint8_t channel, int16_t override) { if (override < 0) return false; /* -1: no change. */ if (channel < AVR_RC_INPUT_NUM_CHANNELS) { _override[channel] = override; if (override != 0) { _valid = 1; return true; } } return false; } void APM2RCInput::clear_overrides() { for (int i = 0; i < AVR_RC_INPUT_NUM_CHANNELS; i++) { _override[i] = 0; } } #endif