from __future__ import print_function from LogAnalyzer import Test,TestResult import DataflashLog # import scipy # import pylab #### TEMP!!! only for dev # from scipy import signal class TestDualGyroDrift(Test): '''test for gyro drift between dual IMU data''' def __init__(self): Test.__init__(self) self.name = "Gyro Drift" self.enable = False def run(self, logdata, verbose): self.result = TestResult() self.result.status = TestResult.StatusType.GOOD # if "IMU" not in logdata.channels or "IMU2" not in logdata.channels: # self.result.status = TestResult.StatusType.NA # return # imuX = logdata.channels["IMU"]["GyrX"].listData # imu2X = logdata.channels["IMU2"]["GyrX"].listData # # NOTE: weird thing about Holger's log is that the counts of IMU+IMU2 are different # print("length 1: %.2f, length 2: %.2f" % (len(imuX),len(imu2X))) # #assert(len(imuX) == len(imu2X)) # # divide the curve into segments and get the average of each segment # # we will get the diff between those averages, rather than a per-sample diff as the IMU+IMU2 arrays are often not the same length # diffThresholdWARN = 0.03 # diffThresholdFAIL = 0.05 # nSamples = 10 # imu1XAverages, imu1YAverages, imu1ZAverages, imu2XAverages, imu2YAverages, imu2ZAverages = ([],[],[],[],[],[]) # imuXDiffAverages, imuYDiffAverages, imuZDiffAverages = ([],[],[]) # maxDiffX, maxDiffY, maxDiffZ = (0,0,0) # sliceLength1 = len(logdata.channels["IMU"]["GyrX"].dictData.values()) / nSamples # sliceLength2 = len(logdata.channels["IMU2"]["GyrX"].dictData.values()) / nSamples # for i in range(0,nSamples): # imu1XAverages.append(numpy.mean(logdata.channels["IMU"]["GyrX"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1])) # imu1YAverages.append(numpy.mean(logdata.channels["IMU"]["GyrY"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1])) # imu1ZAverages.append(numpy.mean(logdata.channels["IMU"]["GyrZ"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1])) # imu2XAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrX"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2])) # imu2YAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrY"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2])) # imu2ZAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrZ"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2])) # imuXDiffAverages.append(imu2XAverages[-1]-imu1XAverages[-1]) # imuYDiffAverages.append(imu2YAverages[-1]-imu1YAverages[-1]) # imuZDiffAverages.append(imu2ZAverages[-1]-imu1ZAverages[-1]) # if abs(imuXDiffAverages[-1]) > maxDiffX: # maxDiffX = imuXDiffAverages[-1] # if abs(imuYDiffAverages[-1]) > maxDiffY: # maxDiffY = imuYDiffAverages[-1] # if abs(imuZDiffAverages[-1]) > maxDiffZ: # maxDiffZ = imuZDiffAverages[-1] # if max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdFAIL: # self.result.status = TestResult.StatusType.FAIL # self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdFAIL # elif max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdWARN: # self.result.status = TestResult.StatusType.WARN # self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdWARN # # pylab.plot(zip(*imuX)[0], zip(*imuX)[1], 'g') # # pylab.plot(zip(*imu2X)[0], zip(*imu2X)[1], 'r') # #pylab.plot(range(0,(nSamples*sliceLength1),sliceLength1), imu1ZAverages, 'b') # print("Gyro averages1X: " + `imu1XAverages`) # print("Gyro averages1Y: " + `imu1YAverages`) # print("Gyro averages1Z: " + `imu1ZAverages` + "\n") # print("Gyro averages2X: " + `imu2XAverages`) # print("Gyro averages2Y: " + `imu2YAverages`) # print("Gyro averages2Z: " + `imu2ZAverages` + "\n") # print("Gyro averages diff X: " + `imuXDiffAverages`) # print("Gyro averages diff Y: " + `imuYDiffAverages`) # print("Gyro averages diff Z: " + `imuZDiffAverages`) # # lowpass filter using numpy # # cutoff = 100 # # fs = 10000.0 # # b,a = scipy.signal.filter_design.butter(5,cutoff/(fs/2)) # # imuXFiltered = scipy.signal.filtfilt(b,a,zip(*imuX)[1]) # # imu2XFiltered = scipy.signal.filtfilt(b,a,zip(*imu2X)[1]) # #pylab.plot(imuXFiltered, 'r') # # TMP: DISPLAY BEFORE+AFTER plots # pylab.show() # # print("imuX average before lowpass filter: %.8f" % logdata.channels["IMU"]["GyrX"].avg()) # # print("imuX average after lowpass filter: %.8f" % numpy.mean(imuXFiltered)) # # print("imu2X average before lowpass filter: %.8f" % logdata.channels["IMU2"]["GyrX"].avg()) # # print("imu2X average after lowpass filter: %.8f" % numpy.mean(imu2XFiltered)) # avg1X = logdata.channels["IMU"]["GyrX"].avg() # avg1Y = logdata.channels["IMU"]["GyrY"].avg() # avg1Z = logdata.channels["IMU"]["GyrZ"].avg() # avg2X = logdata.channels["IMU2"]["GyrX"].avg() # avg2Y = logdata.channels["IMU2"]["GyrY"].avg() # avg2Z = logdata.channels["IMU2"]["GyrZ"].avg() # avgRatioX = (max(avg1X,avg2X) - min(avg1X,avg2X)) / #abs(max(avg1X,avg2X) / min(avg1X,avg2X)) # avgRatioY = abs(max(avg1Y,avg2Y) / min(avg1Y,avg2Y)) # avgRatioZ = abs(max(avg1Z,avg2Z) / min(avg1Z,avg2Z)) # self.result.statusMessage = "IMU gyro avg: %.4f,%.4f,%.4f\nIMU2 gyro avg: %.4f,%.4f,%.4f\nAvg ratio: %.4f,%.4f,%.4f" % (avg1X,avg1Y,avg1Z, avg2X,avg2Y,avg2Z, avgRatioX,avgRatioY,avgRatioZ)