/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ArduPilot device driver for SLAMTEC RPLIDAR A2 (16m range version) * * ALL INFORMATION REGARDING PROTOCOL WAS DERIVED FROM RPLIDAR DATASHEET: * * https://www.slamtec.com/en/Lidar * http://bucket.download.slamtec.com/63ac3f0d8c859d3a10e51c6b3285fcce25a47357/LR001_SLAMTEC_rplidar_protocol_v1.0_en.pdf * * Author: Steven Josefs, IAV GmbH * Based on the LightWare SF40C ArduPilot device driver from Randy Mackay * */ #include "AP_Proximity_RPLidarA2.h" #if HAL_PROXIMITY_ENABLED #include #include #include #define RP_DEBUG_LEVEL 0 #if RP_DEBUG_LEVEL #include #define Debug(level, fmt, args ...) do { if (level <= RP_DEBUG_LEVEL) { gcs().send_text(MAV_SEVERITY_INFO, fmt, ## args); } } while (0) #else #define Debug(level, fmt, args ...) #endif #define COMM_ACTIVITY_TIMEOUT_MS 200 #define RESET_RPA2_WAIT_MS 8 #define RESYNC_TIMEOUT 5000 // Commands //----------------------------------------- // Commands without payload and response #define RPLIDAR_PREAMBLE 0xA5 #define RPLIDAR_CMD_STOP 0x25 #define RPLIDAR_CMD_SCAN 0x20 #define RPLIDAR_CMD_FORCE_SCAN 0x21 #define RPLIDAR_CMD_RESET 0x40 // Commands without payload but have response #define RPLIDAR_CMD_GET_DEVICE_INFO 0x50 #define RPLIDAR_CMD_GET_DEVICE_HEALTH 0x52 // Commands with payload and have response #define RPLIDAR_CMD_EXPRESS_SCAN 0x82 extern const AP_HAL::HAL& hal; // update the _rp_state of the sensor void AP_Proximity_RPLidarA2::update(void) { if (_uart == nullptr) { return; } // initialise sensor if necessary if (!_initialised) { _initialised = initialise(); //returns true if everything initialized properly } // if LIDAR in known state if (_initialised) { get_readings(); } // check for timeout and set health status if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > COMM_ACTIVITY_TIMEOUT_MS)) { set_status(AP_Proximity::Status::NoData); Debug(1, "LIDAR NO DATA"); } else { set_status(AP_Proximity::Status::Good); } } // get maximum distance (in meters) of sensor float AP_Proximity_RPLidarA2::distance_max() const { return 16.0f; //16m max range RPLIDAR2, if you want to support the 8m version this is the only line to change } // get minimum distance (in meters) of sensor float AP_Proximity_RPLidarA2::distance_min() const { return 0.20f; //20cm min range RPLIDAR2 } bool AP_Proximity_RPLidarA2::initialise() { if (!_initialised) { reset_rplidar(); // set to a known state Debug(1, "LIDAR initialised"); } return true; } void AP_Proximity_RPLidarA2::reset_rplidar() { if (_uart == nullptr) { return; } uint8_t tx_buffer[2] = {RPLIDAR_PREAMBLE, RPLIDAR_CMD_RESET}; _uart->write(tx_buffer, 2); _resetted = true; ///< be aware of extra 63 bytes coming after reset containing FW information Debug(1, "LIDAR reset"); // To-Do: ensure delay of 8m after sending reset request _last_reset_ms = AP_HAL::millis(); _rp_state = rp_resetted; } // set Lidar into SCAN mode void AP_Proximity_RPLidarA2::set_scan_mode() { if (_uart == nullptr) { return; } uint8_t tx_buffer[2] = {RPLIDAR_PREAMBLE, RPLIDAR_CMD_SCAN}; _uart->write(tx_buffer, 2); _last_request_ms = AP_HAL::millis(); Debug(1, "LIDAR SCAN MODE ACTIVATED"); _rp_state = rp_responding; } // send request for sensor health void AP_Proximity_RPLidarA2::send_request_for_health() //not called yet { if (_uart == nullptr) { return; } uint8_t tx_buffer[2] = {RPLIDAR_PREAMBLE, RPLIDAR_CMD_GET_DEVICE_HEALTH}; _uart->write(tx_buffer, 2); _last_request_ms = AP_HAL::millis(); _rp_state = rp_health; } void AP_Proximity_RPLidarA2::get_readings() { if (_uart == nullptr) { return; } Debug(2, " CURRENT STATE: %d ", _rp_state); uint32_t nbytes = _uart->available(); while (nbytes-- > 0) { uint8_t c = _uart->read(); Debug(2, "UART READ %x <%c>", c, c); //show HEX values STATE: switch(_rp_state){ case rp_resetted: Debug(3, " BYTE_COUNT %d", _byte_count); if ((c == 0x52 || _information_data) && _byte_count < 62) { if (c == 0x52) { _information_data = true; } _rp_systeminfo[_byte_count] = c; Debug(3, "_rp_systeminfo[%d]=%x",_byte_count,_rp_systeminfo[_byte_count]); _byte_count++; break; } else { if (_information_data) { Debug(1, "GOT RPLIDAR INFORMATION"); _information_data = false; _byte_count = 0; set_scan_mode(); break; } if (_cnt>5) { _rp_state = rp_unknown; _cnt=0; break; } _cnt++; break; } break; case rp_responding: Debug(2, "RESPONDING"); if (c == RPLIDAR_PREAMBLE || _descriptor_data) { _descriptor_data = true; _descriptor[_byte_count] = c; _byte_count++; // descriptor packet has 7 byte in total if (_byte_count == sizeof(_descriptor)) { Debug(2,"LIDAR DESCRIPTOR CATCHED"); _response_type = ResponseType_Descriptor; // identify the payload data after the descriptor parse_response_descriptor(); _byte_count = 0; } } else { _rp_state = rp_unknown; } break; case rp_measurements: if (_sync_error) { // out of 5-byte sync mask -> catch new revolution Debug(1, " OUT OF SYNC"); // on first revolution bit 1 = 1, bit 2 = 0 of the first byte if ((c & 0x03) == 0x01) { _sync_error = 0; Debug(1, " RESYNC"); } else { if (AP_HAL::millis() - _last_distance_received_ms > RESYNC_TIMEOUT) { reset_rplidar(); } break; } } Debug(3, "READ PAYLOAD"); payload[_byte_count] = c; _byte_count++; if (_byte_count == _payload_length) { Debug(2, "LIDAR MEASUREMENT CATCHED"); parse_response_data(); _byte_count = 0; } break; case rp_health: Debug(1, "state: HEALTH"); break; case rp_unknown: Debug(1, "state: UNKNOWN"); if (c == RPLIDAR_PREAMBLE) { _rp_state = rp_responding; goto STATE; break; } _cnt++; if (_cnt>10) { reset_rplidar(); _rp_state = rp_resetted; _cnt=0; } break; default: Debug(1, "UNKNOWN LIDAR STATE"); break; } } } void AP_Proximity_RPLidarA2::parse_response_descriptor() { // check if descriptor packet is valid if (_descriptor[0] == RPLIDAR_PREAMBLE && _descriptor[1] == 0x5A) { if (_descriptor[2] == 0x05 && _descriptor[3] == 0x00 && _descriptor[4] == 0x00 && _descriptor[5] == 0x40 && _descriptor[6] == 0x81) { // payload is SCAN measurement data _payload_length = sizeof(payload.sensor_scan); static_assert(sizeof(payload.sensor_scan) == 5, "Unexpected payload.sensor_scan data structure size"); _response_type = ResponseType_SCAN; Debug(2, "Measurement response detected"); _last_distance_received_ms = AP_HAL::millis(); _rp_state = rp_measurements; } if (_descriptor[2] == 0x03 && _descriptor[3] == 0x00 && _descriptor[4] == 0x00 && _descriptor[5] == 0x00 && _descriptor[6] == 0x06) { // payload is health data _payload_length = sizeof(payload.sensor_health); static_assert(sizeof(payload.sensor_health) == 3, "Unexpected payload.sensor_health data structure size"); _response_type = ResponseType_Health; _last_distance_received_ms = AP_HAL::millis(); _rp_state= rp_health; } return; } Debug(1, "Invalid response descriptor"); _rp_state = rp_unknown; } void AP_Proximity_RPLidarA2::parse_response_data() { switch (_response_type){ case ResponseType_SCAN: Debug(2, "UART %02x %02x%02x %02x%02x", payload[0], payload[2], payload[1], payload[4], payload[3]); //show HEX values // check if valid SCAN packet: a valid packet starts with startbits which are complementary plus a checkbit in byte+1 if ((payload.sensor_scan.startbit == !payload.sensor_scan.not_startbit) && payload.sensor_scan.checkbit) { const float angle_sign = (frontend.get_orientation(state.instance) == 1) ? -1.0f : 1.0f; const float angle_deg = wrap_360(payload.sensor_scan.angle_q6/64.0f * angle_sign + frontend.get_yaw_correction(state.instance)); const float distance_m = (payload.sensor_scan.distance_q2/4000.0f); #if RP_DEBUG_LEVEL >= 2 const uint8_t quality = payload.sensor_scan.quality; Debug(2, " D%02.2f A%03.1f Q%02d", distance_m, angle_deg, quality); #endif _last_distance_received_ms = AP_HAL::millis(); if (!ignore_reading(angle_deg, distance_m)) { const AP_Proximity_Boundary_3D::Face face = boundary.get_face(angle_deg); if (face != _last_face) { // distance is for a new face, the previous one can be updated now if (_last_distance_valid) { boundary.set_face_attributes(_last_face, _last_angle_deg, _last_distance_m); } else { // reset distance from last face boundary.reset_face(face); } // initialize the new face _last_face = face; _last_distance_valid = false; } if (distance_m > distance_min()) { // update shortest distance if (!_last_distance_valid || (distance_m < _last_distance_m)) { _last_distance_m = distance_m; _last_distance_valid = true; _last_angle_deg = angle_deg; } // update OA database database_push(_last_angle_deg, _last_distance_m); } } } else { // not valid payload packet Debug(1, "Invalid Payload"); _sync_error++; } break; case ResponseType_Health: // health issue if status is "3" ->HW error if (payload.sensor_health.status == 3) { Debug(1, "LIDAR Error"); } break; default: // no valid payload packets recognized: return payload data=0 Debug(1, "Unknown LIDAR packet"); break; } } #endif // HAL_PROXIMITY_ENABLED