/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == TRI_FRAME static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_4) ); #endif } static void motors_output_enable() { APM_RC.enable_out(MOT_1); APM_RC.enable_out(MOT_2); APM_RC.enable_out(MOT_4); } static void output_motors_armed() { int out_min = g.rc_3.radio_min; int out_max = g.rc_3.radio_max; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 800); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); int roll_out = (float)g.rc_1.pwm_out * .866; int pitch_out = g.rc_2.pwm_out / 2; //left front motor_out[MOT_2] = g.rc_3.radio_out + roll_out + pitch_out; //right front motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // rear motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out; //motor_out[MOT_4] += (float)(abs(g.rc_4.control_in)) * .013; // Tridge's stability patch if (motor_out[MOT_1] > out_max) { motor_out[MOT_2] -= (motor_out[MOT_1] - out_max) >> 1; motor_out[MOT_4] -= (motor_out[MOT_1] - out_max) >> 1; motor_out[MOT_1] = out_max; } if (motor_out[MOT_2] > out_max) { motor_out[MOT_1] -= (motor_out[MOT_2] - out_max) >> 1; motor_out[MOT_4] -= (motor_out[MOT_2] - out_max) >> 1; motor_out[MOT_2] = out_max; } if (motor_out[MOT_4] > out_max) { motor_out[MOT_1] -= (motor_out[MOT_4] - out_max) >> 1; motor_out[MOT_2] -= (motor_out[MOT_4] - out_max) >> 1; motor_out[MOT_4] = out_max; } // limit output so motors don't stop motor_out[MOT_1] = max(motor_out[MOT_1], out_min); motor_out[MOT_2] = max(motor_out[MOT_2], out_min); motor_out[MOT_4] = max(motor_out[MOT_4], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; } #endif APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); APM_RC.OutputCh(MOT_4, motor_out[MOT_4]); #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); #endif } static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 8; i++) { motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); } static void output_motor_test() { motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; if(g.rc_1.control_in > 3000){ // right motor_out[MOT_1] += 100; } if(g.rc_1.control_in < -3000){ // left motor_out[MOT_2] += 100; } if(g.rc_2.control_in > 3000){ // back motor_out[MOT_4] += 100; } APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); APM_RC.OutputCh(MOT_4, motor_out[MOT_4]); } #endif