/* RC_Channel.cpp - Radio library for Arduino Code by Jason Short. DIYDrones.com This library is free software; you can redistribute it and / or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include #include #include #include "WProgram.h" #include "RC_Channel.h" #define RC_CHANNEL_ANGLE 0 #define RC_CHANNEL_RANGE 1 #define RC_CHANNEL_ANGLE_RAW 2 // setup the control preferences void RC_Channel::set_range(int low, int high) { _type = RC_CHANNEL_RANGE; _high = high; _low = low; } void RC_Channel::set_angle(int angle) { _type = RC_CHANNEL_ANGLE; _high = angle; } void RC_Channel::set_reverse(bool reverse) { if (reverse) _reverse = -1; else _reverse = 1; } bool RC_Channel::get_reverse(void) { if (_reverse==-1) return 1; else return 0; } void RC_Channel::set_filter(bool filter) { _filter = filter; } void RC_Channel::set_type(uint8_t t) { _type = t; //Serial.print("type1: "); //Serial.println(t,DEC); } // call after first read void RC_Channel::trim() { radio_trim = radio_in; } // read input from APM_RC - create a control_in value void RC_Channel::set_pwm(int pwm) { //Serial.print(pwm,DEC); if(_filter){ if(radio_in == 0) radio_in = pwm; else radio_in = (pwm + radio_in) >> 1; // Small filtering }else{ radio_in = pwm; } if(_type == RC_CHANNEL_RANGE){ //Serial.print("range "); control_in = pwm_to_range(); control_in = (control_in < dead_zone) ? 0 : control_in; //if (fabs(scale_output) > 0){ // control_in *= scale_output; //} }else{ control_in = pwm_to_angle(); control_in = (abs(control_in) < dead_zone) ? 0 : control_in; //if (fabs(scale_output) > 0){ // control_in *= scale_output; //} } } int RC_Channel::control_mix(float value) { return (1 - abs(control_in / _high)) * value + control_in; } // are we below a threshold? bool RC_Channel::get_failsafe(void) { return (radio_in < (radio_min - 50)); } // returns just the PWM without the offset from radio_min void RC_Channel::calc_pwm(void) { if(_type == RC_CHANNEL_RANGE){ pwm_out = range_to_pwm(); radio_out = pwm_out + radio_min; }else if(_type == RC_CHANNEL_ANGLE_RAW){ pwm_out = (float)servo_out * .1; radio_out = (pwm_out * _reverse) + 1500; }else{ pwm_out = angle_to_pwm(); radio_out = pwm_out + radio_trim; } radio_out = constrain(radio_out, radio_min.get(), radio_max.get()); } // ------------------------------------------ void RC_Channel::load_eeprom(void) { _group.load(); } void RC_Channel::save_eeprom(void) { _group.save(); } // ------------------------------------------ void RC_Channel::zero_min_max() { radio_min = radio_max = radio_in; } void RC_Channel::update_min_max() { radio_min = min(radio_min.get(), radio_in); radio_max = max(radio_max.get(), radio_in); } // ------------------------------------------ int16_t RC_Channel::pwm_to_angle() { if(radio_in > radio_trim) return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim); else return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min); } int16_t RC_Channel::angle_to_pwm() { if((servo_out * _reverse) > 0) return _reverse * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high; else return _reverse * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high; } // ------------------------------------------ int16_t RC_Channel::pwm_to_range() { //return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min)))); return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min)); } int16_t RC_Channel::range_to_pwm() { //return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min)); return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low); } // ------------------------------------------ float RC_Channel::norm_input() { if(radio_in < radio_trim) return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min); else return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim); } float RC_Channel::norm_output() { if(radio_out < radio_trim) return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min); else return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim); } int16_t RC_Channel_aux::closest_limit(int16_t angle) { // Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic int16_t min = angle_min / 10; int16_t max = angle_max / 10; // Make sure the angle lies in the interval [-180 .. 180[ degrees while (angle < -1800) angle += 3600; while (angle >= 1800) angle -= 3600; // Make sure the angle limits lie in the interval [-180 .. 180[ degrees while (min < -1800) min += 3600; while (min >= 1800) min -= 3600; while (max < -1800) max += 3600; while (max >= 1800) max -= 3600; set_range(min, max); // If the angle is outside servo limits, saturate the angle to the closest limit // On a circle the closest angular position must be carefully calculated to account for wrap-around if ((angle < min) && (angle > max)){ // angle error if min limit is used int16_t err_min = min - angle + (anglemax?0:3600); // add 360 degrees if on the "wrong side" angle = err_min