#include "Tracker.h" // mission storage static const StorageAccess wp_storage(StorageManager::StorageMission); void Tracker::init_ardupilot() { // initialise stats module stats.init(); BoardConfig.init(); #if HAL_MAX_CAN_PROTOCOL_DRIVERS can_mgr.init(); #endif // initialise notify notify.init(); AP_Notify::flags.pre_arm_check = true; AP_Notify::flags.pre_arm_gps_check = true; // initialise battery battery.init(); // init baro before we start the GCS, so that the CLI baro test works barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(); #if LOGGING_ENABLED == ENABLED log_init(); #endif #if AP_SCRIPTING_ENABLED scripting.init(); #endif // AP_SCRIPTING_ENABLED // initialise compass AP::compass().set_log_bit(MASK_LOG_COMPASS); AP::compass().init(); // GPS Initialization gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); ahrs.init(); ahrs.set_fly_forward(false); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); barometer.calibrate(); // initialise AP_Logger library logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&tracker, &Tracker::Log_Write_Vehicle_Startup_Messages, void)); // set serial ports non-blocking serial_manager.set_blocking_writes_all(false); // initialise rc channels including setting mode rc().convert_options(RC_Channel::AUX_FUNC::ARMDISARM_UNUSED, RC_Channel::AUX_FUNC::ARMDISARM); rc().init(); // initialise servos init_servos(); // use given start positions - useful for indoor testing, and // while waiting for GPS lock // sanity check location if (fabsf(g.start_latitude) <= 90.0f && fabsf(g.start_longitude) <= 180.0f) { current_loc.lat = g.start_latitude * 1.0e7f; current_loc.lng = g.start_longitude * 1.0e7f; } else { gcs().send_text(MAV_SEVERITY_NOTICE, "Ignoring invalid START_LATITUDE or START_LONGITUDE parameter"); } // see if EEPROM has a default location as well if (current_loc.lat == 0 && current_loc.lng == 0) { get_home_eeprom(current_loc); } hal.scheduler->delay(1000); // Why???? Mode *newmode = mode_from_mode_num((Mode::Number)g.initial_mode.get()); if (newmode == nullptr) { newmode = &mode_manual; } set_mode(*newmode, ModeReason::STARTUP); if (g.startup_delay > 0) { // arm servos with trim value to allow them to start up (required // for some servos) prepare_servos(); } } /* fetch HOME from EEPROM */ bool Tracker::get_home_eeprom(struct Location &loc) const { // Find out proper location in memory by using the start_byte position + the index // -------------------------------------------------------------------------------- if (g.command_total.get() == 0) { return false; } // read WP position loc = { int32_t(wp_storage.read_uint32(5)), int32_t(wp_storage.read_uint32(9)), int32_t(wp_storage.read_uint32(1)), Location::AltFrame::ABSOLUTE }; return true; } bool Tracker::set_home_eeprom(const Location &temp) { wp_storage.write_byte(0, 0); wp_storage.write_uint32(1, temp.alt); wp_storage.write_uint32(5, temp.lat); wp_storage.write_uint32(9, temp.lng); // Now have a home location in EEPROM g.command_total.set_and_save(1); // At most 1 entry for HOME return true; } bool Tracker::set_home(const Location &temp) { // check EKF origin has been set Location ekf_origin; if (ahrs.get_origin(ekf_origin)) { if (!ahrs.set_home(temp)) { return false; } } if (!set_home_eeprom(temp)) { return false; } current_loc = temp; return true; } void Tracker::arm_servos() { hal.util->set_soft_armed(true); logger.set_vehicle_armed(true); } void Tracker::disarm_servos() { hal.util->set_soft_armed(false); logger.set_vehicle_armed(false); } /* setup servos to trim value after initialising */ void Tracker::prepare_servos() { start_time_ms = AP_HAL::millis(); SRV_Channels::set_output_limit(SRV_Channel::k_tracker_yaw, SRV_Channel::Limit::TRIM); SRV_Channels::set_output_limit(SRV_Channel::k_tracker_pitch, SRV_Channel::Limit::TRIM); SRV_Channels::calc_pwm(); SRV_Channels::output_ch_all(); } void Tracker::set_mode(Mode &newmode, const ModeReason reason) { control_mode_reason = reason; if (mode == &newmode) { // don't switch modes if we are already in the correct mode. return; } mode = &newmode; if (mode->requires_armed_servos()) { arm_servos(); } else { disarm_servos(); } // log mode change logger.Write_Mode((uint8_t)mode->number(), reason); gcs().send_message(MSG_HEARTBEAT); nav_status.bearing = ahrs.yaw_sensor * 0.01f; } bool Tracker::set_mode(const uint8_t new_mode, const ModeReason reason) { Mode *fred = nullptr; switch ((Mode::Number)new_mode) { case Mode::Number::INITIALISING: return false; case Mode::Number::AUTO: fred = &mode_auto; break; case Mode::Number::MANUAL: fred = &mode_manual; break; case Mode::Number::SCAN: fred = &mode_scan; break; case Mode::Number::SERVOTEST: fred = &mode_servotest; break; case Mode::Number::STOP: fred = &mode_stop; break; case Mode::Number::GUIDED: fred = &mode_guided; break; } if (fred == nullptr) { return false; } set_mode(*fred, reason); return true; } /* should we log a message type now? */ bool Tracker::should_log(uint32_t mask) { if (!logger.should_log(mask)) { return false; } return true; } #include <AP_AdvancedFailsafe/AP_AdvancedFailsafe.h> #include <AP_Avoidance/AP_Avoidance.h> #include <AP_ADSB/AP_ADSB.h> // dummy method to avoid linking AFS bool AP_AdvancedFailsafe::gcs_terminate(bool should_terminate, const char *reason) {return false;} AP_AdvancedFailsafe *AP::advancedfailsafe() { return nullptr; } #if HAL_ADSB_ENABLED // dummy method to avoid linking AP_Avoidance AP_Avoidance *AP::ap_avoidance() { return nullptr; } #endif