#include "GCS_Plane.h"
#include "Plane.h"

void GCS_Plane::send_airspeed_calibration(const Vector3f &vg)
{
    for (uint8_t i=0; i<num_gcs(); i++) {
        if (_chan[i].initialised) {
            if (HAVE_PAYLOAD_SPACE((mavlink_channel_t)i, AIRSPEED_AUTOCAL)) {
                plane.airspeed.log_mavlink_send((mavlink_channel_t)i, vg);
            }
        }
    }
}

// update error mask of sensors and subsystems. The mask
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
// then it indicates that the sensor or subsystem is present but
// not functioning correctly.
void GCS_Plane::update_sensor_status_flags(void)
{
     // default sensors present
    control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;

    // first what sensors/controllers we have
    if (plane.g.compass_enabled) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
    }

    const AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
    if (airspeed && airspeed->enabled()) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
    }
    const AP_GPS &gps = AP::gps();
    if (gps.status() > AP_GPS::NO_GPS) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
    }
#if OPTFLOW == ENABLED
    const OpticalFlow *optflow = AP::opticalflow();
    if (optflow && optflow->enabled()) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
    }
#endif
    if (plane.geofence_present()) {
        control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
    }

    if (plane.have_reverse_thrust()) {
        control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
    }
    const AP_Logger &logger = AP::logger();
    if (logger.logging_present()) { // primary logging only (usually File)
        control_sensors_present |= MAV_SYS_STATUS_LOGGING;
    }

    // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence, motor, and battery output which we will set individually
    control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING & ~MAV_SYS_STATUS_SENSOR_BATTERY);

    if (airspeed && airspeed->enabled() && airspeed->use()) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
    }

    if (plane.geofence_enabled()) {
        control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
    }

    if (logger.logging_enabled()) {
        control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
    }

    const AP_BattMonitor &battery = AP::battery();
    if (battery.num_instances() > 0) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
    }

    switch (plane.control_mode) {
    case MANUAL:
        break;

    case ACRO:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
        break;

    case STABILIZE:
    case FLY_BY_WIRE_A:
    case AUTOTUNE:
    case QSTABILIZE:
    case QHOVER:
    case QLAND:
    case QLOITER:
    case QAUTOTUNE:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
        break;

    case FLY_BY_WIRE_B:
    case CRUISE:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
        break;

    case TRAINING:
        if (!plane.training_manual_roll || !plane.training_manual_pitch) {
            control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
            control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation        
        }
        break;

    case AUTO:
    case RTL:
    case LOITER:
    case AVOID_ADSB:
    case GUIDED:
    case CIRCLE:
    case QRTL:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
        break;

    case INITIALISING:
        break;
    }

    // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
    if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
    }

    // default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE.   GEOFENCE always defaults to healthy.
    control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
                                                         MAV_SYS_STATUS_SENSOR_3D_MAG |
                                                         MAV_SYS_STATUS_SENSOR_GPS |
                                                         MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
    control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;

    AP_AHRS &ahrs = AP::ahrs();
    if (ahrs.initialised() && !ahrs.healthy()) {
        // AHRS subsystem is unhealthy
        control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
    }
    const AP_InertialSensor &ins = AP::ins();
    if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
        // trying to use EKF without properly calibrated accelerometers
        control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
    }

    const AP_Baro &barometer = AP::baro();
    if (barometer.all_healthy()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
    }
    const Compass &compass = AP::compass();
    if (plane.g.compass_enabled && compass.healthy() && ahrs.use_compass()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
    }
    if (gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.is_healthy()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
    }
#if OPTFLOW == ENABLED
    if (optflow && optflow->healthy()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
    }
#endif
    if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
    }
    if (!ins.get_accel_health_all()) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
    }
    if (airspeed && airspeed->all_healthy()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
    }
#if GEOFENCE_ENABLED
    if (plane.geofence_breached()) {
        control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
    }
#endif

    if (logger.logging_failed()) {
        control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
    }

    if (millis() - plane.failsafe.last_valid_rc_ms < 200) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
    } else {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
    }

#if AP_TERRAIN_AVAILABLE
    switch (plane.terrain.status()) {
    case AP_Terrain::TerrainStatusDisabled:
        break;
    case AP_Terrain::TerrainStatusUnhealthy:
        control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
        control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
        break;
    case AP_Terrain::TerrainStatusOK:
        control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
        control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
        control_sensors_health  |= MAV_SYS_STATUS_TERRAIN;
        break;
    }
#endif

    const RangeFinder *rangefinder = RangeFinder::get_singleton();
    if (rangefinder && rangefinder->has_orientation(ROTATION_PITCH_270)) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
        if (plane.g.rangefinder_landing) {
            control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
        }
        if (rangefinder->has_data_orient(ROTATION_PITCH_270)) {
            control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;            
        }
    }

    if (plane.have_reverse_thrust() && SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0) {
        control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
        control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
    }

    if (AP_Notify::flags.initialising) {
        // while initialising the gyros and accels are not enabled
        control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
        control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
    }

    if (!plane.battery.healthy() || plane.battery.has_failsafed()) {
        control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY;
    }

#if FRSKY_TELEM_ENABLED == ENABLED
    // give mask of error flags to Frsky_Telemetry
    plane.frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
#endif
}