/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include
#include
#include "AP_MotorsSingle.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsSingle::var_info[] = {
// variables from parent vehicle
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0),
// parameters 1 ~ 29 were reserved for tradheli
// parameters 30 ~ 39 reserved for tricopter
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
// 40 was ROLL_SV_REV
// 41 was PITCH_SV_REV
// 42 was YAW_SV_REV
// @Param: SV_SPEED
// @DisplayName: Servo speed
// @Description: Servo update speed in hz
// @Values: 50, 125, 250
AP_GROUPINFO("SV_SPEED", 43, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
// @Group: SV1_
// @Path: ../RC_Channel/RC_Channel.cpp
AP_SUBGROUPINFO(_servo1, "SV1_", 44, AP_MotorsSingle, RC_Channel),
// @Group: SV2_
// @Path: ../RC_Channel/RC_Channel.cpp
AP_SUBGROUPINFO(_servo2, "SV2_", 45, AP_MotorsSingle, RC_Channel),
// @Group: SV3_
// @Path: ../RC_Channel/RC_Channel.cpp
AP_SUBGROUPINFO(_servo3, "SV3_", 46, AP_MotorsSingle, RC_Channel),
// @Group: SV4_
// @Path: ../RC_Channel/RC_Channel.cpp
AP_SUBGROUPINFO(_servo4, "SV4_", 47, AP_MotorsSingle, RC_Channel),
AP_GROUPEND
};
// init
void AP_MotorsSingle::Init()
{
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_5] = true;
motor_enabled[AP_MOTORS_MOT_6] = true;
// we set four servos to angle
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
// allow mapping of motor7
add_motor_num(CH_7);
}
// set update rate to motors - a value in hertz
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4 ;
rc_set_freq(mask, _servo_speed);
uint32_t mask2 =
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6 ;
rc_set_freq(mask2, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsSingle::enable()
{
// enable output channels
rc_enable_ch(AP_MOTORS_MOT_1);
rc_enable_ch(AP_MOTORS_MOT_2);
rc_enable_ch(AP_MOTORS_MOT_3);
rc_enable_ch(AP_MOTORS_MOT_4);
rc_enable_ch(AP_MOTORS_MOT_5);
rc_enable_ch(AP_MOTORS_MOT_6);
}
void AP_MotorsSingle::output_to_motors()
{
switch (_spool_mode) {
case SHUT_DOWN:
// sends minimum values out to the motors
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough - _yaw_radio_passthrough, _servo1));
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough - _yaw_radio_passthrough, _servo2));
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(-_roll_radio_passthrough - _yaw_radio_passthrough, _servo3));
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-_pitch_radio_passthrough - _yaw_radio_passthrough, _servo4));
rc_write(AP_MOTORS_MOT_5, get_pwm_output_min());
rc_write(AP_MOTORS_MOT_6, get_pwm_output_min());
hal.rcout->push();
break;
case SPIN_WHEN_ARMED:
// sends output to motors when armed but not flying
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[0], _servo1));
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[1], _servo2));
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[2], _servo3));
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[3], _servo4));
rc_write(AP_MOTORS_MOT_5, calc_spin_up_to_pwm());
rc_write(AP_MOTORS_MOT_6, calc_spin_up_to_pwm());
hal.rcout->push();
break;
case SPOOL_UP:
case THROTTLE_UNLIMITED:
case SPOOL_DOWN:
// set motor output based on thrust requests
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1));
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2));
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3));
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4));
rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out));
rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out));
hal.rcout->push();
break;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsSingle::get_motor_mask()
{
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4 |
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6;
return rc_map_mask(mask);
}
// sends commands to the motors
void AP_MotorsSingle::output_armed_stabilizing()
{
float roll_thrust; // roll thrust input value, +/- 1.0
float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
float actuator_allowed = 0.0f; // amount of yaw we can fit in
float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator
float actuator_max = 0.0f; // maximum actuator value
// apply voltage and air pressure compensation
roll_thrust = _roll_in * get_compensation_gain();
pitch_thrust = _pitch_in * get_compensation_gain();
yaw_thrust = _yaw_in * get_compensation_gain();
throttle_thrust = get_throttle() * get_compensation_gain();
// sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) {
throttle_thrust = 0.0f;
limit.throttle_lower = true;
}
if (throttle_thrust >= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
_throttle_avg_max = constrain_float(_throttle_avg_max, throttle_thrust, _throttle_thrust_max);
float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust));
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
if (is_zero(rp_thrust_max)) {
rp_scale = 1.0f;
} else {
rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), (float)_yaw_headroom/1000.0f)) / rp_thrust_max, 0.0f, 1.0f);
if (rp_scale < 1.0f) {
limit.roll_pitch = true;
}
}
actuator_allowed = 1.0f - rp_scale * rp_thrust_max;
if (fabsf(yaw_thrust) > actuator_allowed) {
yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
limit.yaw = true;
}
// combine roll, pitch and yaw on each actuator
// front servo
actuator[0] = rp_scale * roll_thrust - yaw_thrust;
// right servo
actuator[1] = rp_scale * pitch_thrust - yaw_thrust;
// rear servo
actuator[2] = -rp_scale * roll_thrust - yaw_thrust;
// left servo
actuator[3] = -rp_scale * pitch_thrust - yaw_thrust;
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
thrust_min_rpy = MAX(MAX(fabsf(actuator[0]), fabsf(actuator[1])), MAX(fabsf(actuator[2]), fabsf(actuator[3])));
thr_adj = throttle_thrust - _throttle_avg_max;
if (thr_adj < (thrust_min_rpy - _throttle_avg_max)) {
// Throttle can't be reduced to the desired level because this would mean roll or pitch control
// would not be able to reach the desired level because of lack of thrust.
thr_adj = MIN(thrust_min_rpy, _throttle_avg_max) - _throttle_avg_max;
}
// calculate the throttle setting for the lift fan
_thrust_out = _throttle_avg_max + thr_adj;
if (is_zero(_thrust_out)) {
limit.roll_pitch = true;
limit.yaw = true;
}
// limit thrust out for calculation of actuator gains
float thrust_out_actuator = constrain_float(MAX(_throttle_hover*0.5f,_thrust_out), 0.1f, 1.0f);
// calculate the maximum allowed actuator output and maximum requested actuator output
for (uint8_t i=0; i fabsf(actuator[i])) {
actuator_max = fabsf(actuator[i]);
}
}
if (actuator_max > thrust_out_actuator && !is_zero(actuator_max)) {
// roll, pitch and yaw request can not be achieved at full servo defection
// reduce roll, pitch and yaw to reduce the requested defection to maximum
limit.roll_pitch = true;
limit.yaw = true;
rp_scale = thrust_out_actuator/actuator_max;
} else {
rp_scale = 1.0f;
}
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
// static thrust is proportional to the airflow velocity squared
// therefore the torque of the roll and pitch actuators should be approximately proportional to
// the angle of attack multiplied by the static thrust.
for (uint8_t i=0; i