// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Commands:\n" " logs\n" " setup\n" " test\n" " planner\n" "\n" "Move the slide switch and reset to FLY.\n" "\n")); return(0); } // Command/function table for the top-level menu. const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"help", main_menu_help}, {"planner", planner_mode} }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); #endif // CLI_ENABLED static void init_ardupilot() { // Console serial port // // The console port buffers are defined to be sufficiently large to support // the console's use as a logging device, optionally as the GPS port when // GPS_PROTOCOL_IMU is selected, and as the telemetry port. // // XXX This could be optimised to reduce the buffer sizes in the cases // where they are not otherwise required. // Serial.begin(SERIAL0_BAUD, 128, 128); // GPS serial port. // // Not used if the IMU/X-Plane GPS is in use. // // XXX currently the EM406 (SiRF receiver) is nominally configured // at 57600, however it's not been supported to date. We should // probably standardise on 38400. // // XXX the 128 byte receive buffer may be too small for NMEA, depending // on the message set configured. // #if GPS_PROTOCOL != GPS_PROTOCOL_IMU Serial1.begin(38400, 128, 16); #endif Serial.printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %lu\n"), freeRAM()); // // Check the EEPROM format version before loading any parameters from EEPROM. // report_version(); // setup IO pins pinMode(C_LED_PIN, OUTPUT); // GPS status LED pinMode(A_LED_PIN, OUTPUT); // GPS status LED pinMode(B_LED_PIN, OUTPUT); // GPS status LED pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode pinMode(PUSHBUTTON_PIN, INPUT); // unused DDRL |= B00000100; // Set Port L, pin 2 to output for the relay // XXX set Analog out 14 to output // 76543210 //DDRK |= B01010000; #if MOTOR_LEDS == 1 pinMode(FR_LED, OUTPUT); // GPS status LED pinMode(RE_LED, OUTPUT); // GPS status LED pinMode(RI_LED, OUTPUT); // GPS status LED pinMode(LE_LED, OUTPUT); // GPS status LED #endif #if PIEZO == 1 pinMode(PIEZO_PIN,OUTPUT); piezo_beep(); #endif if (!g.format_version.load() || g.format_version != Parameters::k_format_version) { //Serial.printf_P(PSTR("\n\nForcing complete parameter reset...")); /*Serial.printf_P(PSTR("\n\nEEPROM format version %d not compatible with this firmware (requires %d)" "\n\nForcing complete parameter reset..."), g.format_version.get(), Parameters::k_format_version); */ // erase all parameters Serial.printf_P(PSTR("Firmware change: erasing EEPROM...\n")); delay(100); // wait for serial send AP_Var::erase_all(); // save the new format version g.format_version.set_and_save(Parameters::k_format_version); Serial.printf_P(PSTR("Please Run Setup...\n")); while (true) { delay(1000); if(motor_light){ digitalWrite(A_LED_PIN, HIGH); digitalWrite(B_LED_PIN, HIGH); digitalWrite(C_LED_PIN, HIGH); }else{ digitalWrite(A_LED_PIN, LOW); digitalWrite(B_LED_PIN, LOW); digitalWrite(C_LED_PIN, LOW); } motor_light = !motor_light; } }else{ // Load all auto-loaded EEPROM variables AP_Var::load_all(); } // Telemetry port. // // Not used if telemetry is going to the console. // // XXX for unidirectional protocols, we could (should) minimize // the receive buffer, and the transmit buffer could also be // shrunk for protocols that don't send large messages. // Serial3.begin(map_baudrate(g.serial3_baud,SERIAL3_BAUD), 128, 128); #ifdef RADIO_OVERRIDE_DEFAULTS { int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS; APM_RC.setHIL(rc_override); } #endif #if FRAME_CONFIG == HELI_FRAME heli_init_swash(); // heli initialisation #endif init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs init_camera(); #if HIL_MODE != HIL_MODE_ATTITUDE // begin filtering the ADC Gyros adc.filter_result = true; adc.Init(); // APM ADC library initialization barometer.Init(); // APM Abs Pressure sensor initialization #endif // Do GPS init g_gps = &g_gps_driver; g_gps->init(); // GPS Initialization g_gps->callback = mavlink_delay; // init the GCS #if GCS_PORT == 3 gcs.init(&Serial3); #else gcs.init(&Serial); #endif // init the HIL #if HIL_MODE != HIL_MODE_DISABLED #if HIL_PORT == 3 hil.init(&Serial3); #elif HIL_PORT == 1 hil.init(&Serial1); #else hil.init(&Serial); #endif #endif // We may have a hil object instantiated just for mission planning #if HIL_MODE == HIL_MODE_DISABLED && HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_PORT == 0 hil.init(&Serial); #endif if(g.compass_enabled) init_compass(); #ifdef OPTFLOW_ENABLED // init the optical flow sensor if(g.optflow_enabled) { init_optflow(); } #endif // Logging: // -------- // DataFlash log initialization DataFlash.Init(); #if CLI_ENABLED == ENABLED // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // if (check_startup_for_CLI()) { digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED Serial.printf_P(PSTR("\n" "Entering interactive setup mode...\n" "\n" "Type 'help' to list commands, 'exit' to leave a submenu.\n" "Visit the 'setup' menu for first-time configuration.\n\n")); for (;;) { //Serial.println_P(PSTR("\nMove the slide switch and reset to FLY.\n")); main_menu.run(); } } #endif // CLI_ENABLED if(g.esc_calibrate == 1){ init_esc(); } // Logging: // -------- if(g.log_bitmask != 0){ // TODO - Here we will check on the length of the last log // We don't want to create a bunch of little logs due to powering on and off start_new_log(); } GPS_enabled = false; // Read in the GPS for (byte counter = 0; ; counter++) { g_gps->update(); if (g_gps->status() != 0){ GPS_enabled = true; break; } if (counter >= 2) { GPS_enabled = false; break; } } // lengthen the idle timeout for gps Auto_detect // --------------------------------------------- g_gps->idleTimeout = 20000; // print the GPS status // -------------------- report_gps(); #if HIL_MODE != HIL_MODE_ATTITUDE // read Baro pressure at ground //----------------------------- init_barometer(); #endif // initialize commands // ------------------- init_commands(); // set the correct flight mode // --------------------------- reset_control_switch(); startup_ground(); Log_Write_Startup(); SendDebug("\nReady to FLY "); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** static void startup_ground(void) { gcs.send_text_P(SEVERITY_LOW,PSTR("GROUND START")); #if HIL_MODE != HIL_MODE_ATTITUDE // Warm up and read Gyro offsets // ----------------------------- imu.init_gyro(mavlink_delay); #if CLI_ENABLED == ENABLED report_imu(); #endif #endif // reset the leds // --------------------------- clear_leds(); } /* #define YAW_HOLD 0 #define YAW_ACRO 1 #define YAW_AUTO 2 #define YAW_LOOK_AT_HOME 3 #define ROLL_PITCH_STABLE 0 #define ROLL_PITCH_ACRO 1 #define ROLL_PITCH_AUTO 2 #define THROTTLE_MANUAL 0 #define THROTTLE_HOLD 1 #define THROTTLE_AUTO 2 */ static void set_mode(byte mode) { if(control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } old_control_mode = control_mode; control_mode = mode; control_mode = constrain(control_mode, 0, NUM_MODES - 1); // used to stop fly_aways motor_auto_armed = (g.rc_3.control_in > 0); Serial.println(flight_mode_strings[control_mode]); // report the GPS and Motor arming status led_mode = NORMAL_LEDS; reset_nav(); switch(control_mode) { case ACRO: yaw_mode = YAW_ACRO; roll_pitch_mode = ROLL_PITCH_ACRO; throttle_mode = THROTTLE_MANUAL; reset_hold_I(); break; case STABILIZE: yaw_mode = YAW_HOLD; roll_pitch_mode = ROLL_PITCH_STABLE; throttle_mode = THROTTLE_MANUAL; reset_hold_I(); break; case ALT_HOLD: yaw_mode = ALT_HOLD_YAW; roll_pitch_mode = ALT_HOLD_RP; throttle_mode = ALT_HOLD_THR; reset_hold_I(); init_throttle_cruise(); next_WP = current_loc; break; case AUTO: reset_hold_I(); yaw_mode = AUTO_YAW; roll_pitch_mode = AUTO_RP; throttle_mode = AUTO_THR; init_throttle_cruise(); // loads the commands from where we left off init_commands(); break; case CIRCLE: yaw_mode = CIRCLE_YAW; roll_pitch_mode = CIRCLE_RP; throttle_mode = CIRCLE_THR; init_throttle_cruise(); next_WP = current_loc; break; case LOITER: yaw_mode = LOITER_YAW; roll_pitch_mode = LOITER_RP; throttle_mode = LOITER_THR; init_throttle_cruise(); next_WP = current_loc; break; case POSITION: yaw_mode = YAW_HOLD; roll_pitch_mode = ROLL_PITCH_AUTO; throttle_mode = THROTTLE_MANUAL; next_WP = current_loc; break; case GUIDED: yaw_mode = YAW_AUTO; roll_pitch_mode = ROLL_PITCH_AUTO; throttle_mode = THROTTLE_AUTO; //xtrack_enabled = true; init_throttle_cruise(); next_WP = current_loc; set_next_WP(&guided_WP); break; case RTL: yaw_mode = RTL_YAW; roll_pitch_mode = RTL_RP; throttle_mode = RTL_THR; //xtrack_enabled = true; init_throttle_cruise(); do_RTL(); break; default: break; } Log_Write_Mode(control_mode); // output control mode to the ground station gcs.send_message(MSG_MODE_CHANGE); } static void set_failsafe(boolean mode) { // only act on changes // ------------------- if(failsafe != mode){ // store the value so we don't trip the gate twice // ----------------------------------------------- failsafe = mode; if (failsafe == false){ // We've regained radio contact // ---------------------------- failsafe_off_event(); }else{ // We've lost radio contact // ------------------------ failsafe_on_event(); } } } static void init_compass() { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft dcm.set_compass(&compass); compass.init(); compass.get_offsets(); // load offsets to account for airframe magnetic interference } #ifdef OPTFLOW_ENABLED static void init_optflow() { if( optflow.init() == false ) { g.optflow_enabled = false; //SendDebug("\nFailed to Init OptFlow "); } optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view } #endif /* This function gets the current value of the heap and stack pointers. * The stack pointer starts at the top of RAM and grows downwards. The heap pointer * starts just above the static variables etc. and grows upwards. SP should always * be larger than HP or you'll be in big trouble! The smaller the gap, the more * careful you need to be. Julian Gall 6 - Feb - 2009. */ static unsigned long freeRAM() { uint8_t * heapptr, * stackptr; stackptr = (uint8_t *)malloc(4); // use stackptr temporarily heapptr = stackptr; // save value of heap pointer free(stackptr); // free up the memory again (sets stackptr to 0) stackptr = (uint8_t *)(SP); // save value of stack pointer return stackptr - heapptr; } static void init_simple_bearing() { initial_simple_bearing = dcm.yaw_sensor; } static void init_throttle_cruise() { // are we moving from manual throttle to auto_throttle? if((old_control_mode <= STABILIZE) && (g.rc_3.control_in > MINIMUM_THROTTLE)){ g.pi_throttle.reset_I(); g.throttle_cruise.set_and_save(g.rc_3.control_in); } } #if BROKEN_SLIDER == 1 static boolean check_startup_for_CLI() { //return true; if((g.rc_4.radio_max) < 1600){ // CLI mode return true; }else if(abs(g.rc_4.control_in) > 3000){ // CLI mode return true; }else{ // startup to fly return false; } } #else static boolean check_startup_for_CLI() { return (digitalRead(SLIDE_SWITCH_PIN) == 0); } #endif /* map from a 8 bit EEPROM baud rate to a real baud rate */ static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) { switch (rate) { case 9: return 9600; case 19: return 19200; case 38: return 38400; case 57: return 57600; case 111: return 111100; case 115: return 115200; } Serial.println_P(PSTR("Invalid SERIAL3_BAUD")); return default_baud; }