/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Septentrio GPS driver for ArduPilot. // Code by Michael Oborne // #include "AP_GPS.h" #include "AP_GPS_SBF.h" #include #include #include #include #if AP_GPS_SBF_ENABLED extern const AP_HAL::HAL& hal; #define SBF_DEBUGGING 0 #if SBF_DEBUGGING # define Debug(fmt, args ...) \ do { \ hal.console->printf("%s:%d: " fmt "\n", \ __FUNCTION__, __LINE__, \ ## args); \ hal.scheduler->delay(1); \ } while(0) #else # define Debug(fmt, args ...) #endif #ifndef GPS_SBF_STREAM_NUMBER #define GPS_SBF_STREAM_NUMBER 1 #endif #define SBF_EXCESS_COMMAND_BYTES 5 // 2 start bytes + validity byte + space byte + endline byte #define RX_ERROR_MASK (CONGESTION | \ MISSEDEVENT | \ CPUOVERLOAD | \ INVALIDCONFIG | \ OUTOFGEOFENCE) constexpr const char *AP_GPS_SBF::portIdentifiers[]; constexpr const char* AP_GPS_SBF::_initialisation_blob[]; constexpr const char* AP_GPS_SBF::sbas_on_blob[]; AP_GPS_SBF::AP_GPS_SBF(AP_GPS &_gps, AP_GPS::Params &_params, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _params, _state, _port) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; _config_last_ack_time = AP_HAL::millis(); // if we ever parse RTK observations it will always be of type NED, so set it once state.rtk_baseline_coords_type = RTK_BASELINE_COORDINATE_SYSTEM_NED; // yaw available when option bit set or using dual antenna if (option_set(AP_GPS::DriverOptions::SBF_UseBaseForYaw) || (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA)) { state.gps_yaw_configured = true; } } AP_GPS_SBF::~AP_GPS_SBF (void) { free(config_string); } // Process all bytes available from the stream // bool AP_GPS_SBF::read(void) { bool ret = false; uint32_t available_bytes = port->available(); for (uint32_t i = 0; i < available_bytes; i++) { uint8_t temp = port->read(); #if AP_GPS_DEBUG_LOGGING_ENABLED log_data(&temp, 1); #endif ret |= parse(temp); } const uint32_t now = AP_HAL::millis(); if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE) { if (config_step != Config_State::Complete) { if (now > _init_blob_time) { if (now > _config_last_ack_time + 2000) { const size_t port_enable_len = strlen(_port_enable); if (port_enable_len <= port->txspace()) { // try to enable input on the GPS port if we have not made progress on configuring it Debug("SBF Sending port enable"); port->write((const uint8_t*)_port_enable, port_enable_len); _config_last_ack_time = now; } } else if (readyForCommand) { if (config_string == nullptr) { switch (config_step) { case Config_State::Baud_Rate: if (asprintf(&config_string, "scs,COM%d,baud%d,bits8,No,bit1,%s\n", (int)params.com_port, 230400, port->get_flow_control() != AP_HAL::UARTDriver::flow_control::FLOW_CONTROL_ENABLE ? "none" : "RTS|CTS") == -1) { config_string = nullptr; } break; case Config_State::SSO: const char *extra_config; switch (get_type()) { case AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA: extra_config = "+AttCovEuler+AuxAntPositions"; break; case AP_GPS::GPS_Type::GPS_TYPE_SBF: default: extra_config = ""; break; } if (asprintf(&config_string, "sso,Stream%d,COM%d,PVTGeodetic+DOP+ReceiverStatus+VelCovGeodetic+BaseVectorGeod%s,msec100\n", (int)GPS_SBF_STREAM_NUMBER, (int)params.com_port, extra_config) == -1) { config_string = nullptr; } break; case Config_State::Constellation: if ((params.gnss_mode&0x6F)!=0) { //IMES not taken into account by Septentrio receivers if (asprintf(&config_string, "sst, %s%s%s%s%s%s\n", (params.gnss_mode&(1U<<0))!=0 ? "GPS" : "", (params.gnss_mode&(1U<<1))!=0 ? ((params.gnss_mode&0x01)==0 ? "SBAS" : "+SBAS") : "", (params.gnss_mode&(1U<<2))!=0 ? ((params.gnss_mode&0x03)==0 ? "GALILEO" : "+GALILEO") : "", (params.gnss_mode&(1U<<3))!=0 ? ((params.gnss_mode&0x07)==0 ? "BEIDOU" : "+BEIDOU") : "", (params.gnss_mode&(1U<<5))!=0 ? ((params.gnss_mode&0x0F)==0 ? "QZSS" : "+QZSS") : "", (params.gnss_mode&(1U<<6))!=0 ? ((params.gnss_mode&0x2F)==0 ? "GLONASS" : "+GLONASS") : "") == -1) { config_string=nullptr; } } break; case Config_State::Blob: if (asprintf(&config_string, "%s\n", _initialisation_blob[_init_blob_index]) == -1) { config_string = nullptr; } break; case Config_State::SBAS: switch ((AP_GPS::SBAS_Mode)gps._sbas_mode) { case AP_GPS::SBAS_Mode::Disabled: if (asprintf(&config_string, "%s\n", sbas_off) == -1) { config_string = nullptr; } break; case AP_GPS::SBAS_Mode::Enabled: if (asprintf(&config_string, "%s\n", sbas_on_blob[_init_blob_index]) == -1) { config_string = nullptr; } break; case AP_GPS::SBAS_Mode::DoNotChange: config_string = nullptr; config_step = Config_State::Complete; break; } break; case Config_State::SGA: { const char *targetGA = "none"; if (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA) { targetGA = "MultiAntenna"; } if (asprintf(&config_string, "sga, %s\n", targetGA)) { config_string = nullptr; } break; } case Config_State::Complete: // should never reach here, why search for a config if we have fully configured already INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); break; } } if (config_string != nullptr) { const size_t config_length = strlen(config_string); if (config_length <= port->txspace()) { Debug("SBF sending init string: %s", config_string); port->write((const uint8_t*)config_string, config_length); readyForCommand = false; } } } } } else if (gps._raw_data == 2) { // only manage disarm/rearms when the user opts into it if (hal.util->get_soft_armed()) { _has_been_armed = true; } else if (_has_been_armed && (RxState & SBF_DISK_MOUNTED)) { // since init is done at this point and unmounting should be rate limited, // take over the _init_blob_time variable if (now > _init_blob_time) { unmount_disk(); _init_blob_time = now + 1000; } } } } // yaw timeout after 300 milliseconds if ((now - state.gps_yaw_time_ms) > 300) { state.have_gps_yaw = false; state.have_gps_yaw_accuracy = false; } return ret; } bool AP_GPS_SBF::logging_healthy(void) const { switch (gps._raw_data) { case 1: default: return (RxState & SBF_DISK_MOUNTED) && (RxState & SBF_DISK_ACTIVITY); case 2: return ((RxState & SBF_DISK_MOUNTED) && (RxState & SBF_DISK_ACTIVITY)) || (!hal.util->get_soft_armed() && _has_been_armed); } } bool AP_GPS_SBF::parse(uint8_t temp) { switch (sbf_msg.sbf_state) { default: case sbf_msg_parser_t::PREAMBLE1: if (temp == SBF_PREAMBLE1) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE2; sbf_msg.read = 0; } else { // attempt to detect command prompt portIdentifier[portLength++] = (char)temp; bool foundPossiblePort = false; for (const char *portId : portIdentifiers) { if (strncmp(portId, portIdentifier, MIN(portLength, 3)) == 0) { // we found one of the COM/USB/IP related ports if (portLength == 4) { // validate that we have an ascii number if (isdigit((char)temp)) { foundPossiblePort = true; break; } } else if (portLength >= sizeof(portIdentifier)) { if ((char)temp == '>') { readyForCommand = true; Debug("SBF: Ready for command"); } } else { foundPossiblePort = true; } break; } } if (!foundPossiblePort) { portLength = 0; } } break; case sbf_msg_parser_t::PREAMBLE2: if (temp == SBF_PREAMBLE2) { sbf_msg.sbf_state = sbf_msg_parser_t::CRC1; } else if (temp == 'R') { Debug("SBF got a response\n"); sbf_msg.sbf_state = sbf_msg_parser_t::COMMAND_LINE; } else { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; } break; case sbf_msg_parser_t::CRC1: sbf_msg.crc = temp; sbf_msg.sbf_state = sbf_msg_parser_t::CRC2; break; case sbf_msg_parser_t::CRC2: sbf_msg.crc += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID1; break; case sbf_msg_parser_t::BLOCKID1: sbf_msg.blockid = temp; sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID2; break; case sbf_msg_parser_t::BLOCKID2: sbf_msg.blockid += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH1; break; case sbf_msg_parser_t::LENGTH1: sbf_msg.length = temp; sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH2; break; case sbf_msg_parser_t::LENGTH2: sbf_msg.length += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::DATA; if (sbf_msg.length % 4 != 0) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; Debug("bad packet length=%u\n", (unsigned)sbf_msg.length); } if (sbf_msg.length < 8) { Debug("bad packet length=%u\n", (unsigned)sbf_msg.length); sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; crc_error_counter++; // this is a probable buffer overflow, but this // indicates not enough bytes to do a crc break; } break; case sbf_msg_parser_t::DATA: if (sbf_msg.read < sizeof(sbf_msg.data)) { sbf_msg.data.bytes[sbf_msg.read] = temp; } sbf_msg.read++; if (sbf_msg.read >= (sbf_msg.length - 8)) { if (sbf_msg.read > sizeof(sbf_msg.data)) { // not interested in these large messages sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } uint16_t crc = crc16_ccitt((uint8_t*)&sbf_msg.blockid, 2, 0); crc = crc16_ccitt((uint8_t*)&sbf_msg.length, 2, crc); crc = crc16_ccitt((uint8_t*)&sbf_msg.data, sbf_msg.length - 8, crc); sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; if (sbf_msg.crc == crc) { return process_message(); } else { Debug("crc fail\n"); crc_error_counter++; } } break; case sbf_msg_parser_t::COMMAND_LINE: if (sbf_msg.read < (sizeof(sbf_msg.data) - 1)) { sbf_msg.data.bytes[sbf_msg.read] = temp; } else { // we don't have enough buffer to compare the commands // most probable cause is that a user injected a longer command then // we have buffer for, or it could be a corruption, either way we // simply ignore the result sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } sbf_msg.read++; if (temp == '\n') { sbf_msg.data.bytes[sbf_msg.read] = 0; // received the result, lets assess it if (sbf_msg.data.bytes[0] == ':') { // valid command, determine if it was the one we were trying // to send in the configuration sequence if (config_string != nullptr) { if (!strncmp(config_string, (char *)(sbf_msg.data.bytes + 2), sbf_msg.read - SBF_EXCESS_COMMAND_BYTES)) { Debug("SBF Ack Command: %s\n", sbf_msg.data.bytes); free(config_string); config_string = nullptr; switch (config_step) { case Config_State::Baud_Rate: config_step = Config_State::SSO; break; case Config_State::SSO: config_step = Config_State::Constellation; break; case Config_State::Constellation: config_step = Config_State::Blob; break; case Config_State::Blob: _init_blob_index++; if (_init_blob_index >= ARRAY_SIZE(_initialisation_blob)) { config_step = Config_State::SBAS; _init_blob_index = 0; } break; case Config_State::SBAS: _init_blob_index++; if ((gps._sbas_mode == AP_GPS::SBAS_Mode::Disabled) ||_init_blob_index >= ARRAY_SIZE(sbas_on_blob)) { config_step = Config_State::SGA; } break; case Config_State::SGA: config_step = Config_State::Complete; break; case Config_State::Complete: // should never reach here, this implies that we validated a config string when we hadn't sent any INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); break; } _config_last_ack_time = AP_HAL::millis(); } else { Debug("SBF Ack command (unexpected): %s\n", sbf_msg.data.bytes); } } } else { // rejected command, send it out as a debug Debug("SBF NACK Command: %s\n", sbf_msg.data.bytes); } // resume normal parsing sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } break; } return false; } static bool is_DNU(double value) { constexpr double DNU = -2e-10f; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" // suppress -Wfloat-equal as it's false positive when testing for DNU values return value != DNU; #pragma GCC diagnostic pop } bool AP_GPS_SBF::process_message(void) { uint16_t blockid = (sbf_msg.blockid & 8191u); Debug("BlockID %d", blockid); switch (blockid) { case PVTGeodetic: { const msg4007 &temp = sbf_msg.data.msg4007u; // Update time state if (temp.WNc != 65535) { state.time_week = temp.WNc; state.time_week_ms = (uint32_t)(temp.TOW); } check_new_itow(temp.TOW, sbf_msg.length); state.last_gps_time_ms = AP_HAL::millis(); // Update velocity state (don't use −2·10^10) if (temp.Vn > -200000) { state.velocity.x = (float)(temp.Vn); state.velocity.y = (float)(temp.Ve); state.velocity.z = (float)(-temp.Vu); state.have_vertical_velocity = true; velocity_to_speed_course(state); state.rtk_age_ms = temp.MeanCorrAge * 10; // value is expressed as twice the rms error = int16 * 0.01/2 state.horizontal_accuracy = (float)temp.HAccuracy * 0.005f; state.vertical_accuracy = (float)temp.VAccuracy * 0.005f; state.have_horizontal_accuracy = true; state.have_vertical_accuracy = true; } // Update position state (don't use -2·10^10) if (temp.Latitude > -200000) { state.location.lat = (int32_t)(temp.Latitude * RAD_TO_DEG_DOUBLE * (double)1e7); state.location.lng = (int32_t)(temp.Longitude * RAD_TO_DEG_DOUBLE * (double)1e7); state.have_undulation = !is_DNU(temp.Undulation); double height = temp.Height; // in metres if (state.have_undulation) { height -= temp.Undulation; state.undulation = -temp.Undulation; } set_alt_amsl_cm(state, (float)height * 1e2f); // m -> cm } state.num_sats = temp.NrSV; if (temp.NrSV == 255) { // Do-Not-Use value for NrSV field in PVTGeodetic message state.num_sats = 0; } Debug("temp.Mode=0x%02x\n", (unsigned)temp.Mode); switch (temp.Mode & 15) { case 0: // no pvt state.status = AP_GPS::NO_FIX; break; case 1: // standalone state.status = AP_GPS::GPS_OK_FIX_3D; break; case 2: // dgps state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 3: // fixed location state.status = AP_GPS::GPS_OK_FIX_3D; break; case 4: // rtk fixed state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; break; case 5: // rtk float state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; break; case 6: // sbas state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 7: // moving rtk fixed state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; break; case 8: // moving rtk float state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; break; } if ((temp.Mode & 64) > 0) { // gps is in base mode state.status = AP_GPS::NO_FIX; } else if ((temp.Mode & 128) > 0) { // gps only has 2d fix state.status = AP_GPS::GPS_OK_FIX_2D; } return true; } case DOP: { const msg4001 &temp = sbf_msg.data.msg4001u; check_new_itow(temp.TOW, sbf_msg.length); state.hdop = temp.HDOP; state.vdop = temp.VDOP; break; } case ReceiverStatus: { const msg4014 &temp = sbf_msg.data.msg4014u; check_new_itow(temp.TOW, sbf_msg.length); RxState = temp.RxState; if ((RxError & RX_ERROR_MASK) != (temp.RxError & RX_ERROR_MASK)) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %u: SBF error changed (0x%08x/0x%08x)", (unsigned int)(state.instance + 1), (unsigned int)(RxError & RX_ERROR_MASK), (unsigned int)(temp.RxError & RX_ERROR_MASK)); } RxError = temp.RxError; break; } case VelCovGeodetic: { const msg5908 &temp = sbf_msg.data.msg5908u; check_new_itow(temp.TOW, sbf_msg.length); // select the maximum variance, as the EKF will apply it to all the columns in it's estimate // FIXME: Support returning the covariance matrix to the EKF float max_variance_squared = MAX(temp.Cov_VnVn, MAX(temp.Cov_VeVe, temp.Cov_VuVu)); if (is_positive(max_variance_squared)) { state.have_speed_accuracy = true; state.speed_accuracy = sqrt(max_variance_squared); } else { state.have_speed_accuracy = false; } break; } case AttEulerCov: { // yaw accuracy is taken from this message even though we actually calculate the yaw ourself (see AuxAntPositions below) // this is OK based on the assumption that the calculation methods are similar and that inaccuracy arises from the sensor readings if (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA) { const msg5939 &temp = sbf_msg.data.msg5939u; check_new_itow(temp.TOW, sbf_msg.length); constexpr double floatDNU = -2e-10f; constexpr uint8_t errorBits = 0x8F; // Bits 0-1 are aux 1 baseline // Bits 2-3 are aux 2 baseline // Bit 7 is attitude not requested #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" // suppress -Wfloat-equal as it's false positive when testing for DNU values if (((temp.Error & errorBits) == 0) && (temp.Cov_HeadHead != floatDNU)) { #pragma GCC diagnostic pop state.gps_yaw_accuracy = sqrtf(temp.Cov_HeadHead); state.have_gps_yaw_accuracy = true; } else { state.gps_yaw_accuracy = false; } } break; } case AuxAntPositions: { #if GPS_MOVING_BASELINE if (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA) { // calculate yaw using reported antenna positions in earth-frame // note that this calculation does not correct for the vehicle's roll and pitch meaning it is inaccurate at very high lean angles const msg5942 &temp = sbf_msg.data.msg5942u; check_new_itow(temp.TOW, sbf_msg.length); if (temp.N > 0 && temp.ant1.Error == 0 && temp.ant1.AmbiguityType == 0) { // valid RTK integer fix const float rel_heading_deg = degrees(atan2f(temp.ant1.DeltaEast, temp.ant1.DeltaNorth)); calculate_moving_base_yaw(rel_heading_deg, Vector3f(temp.ant1.DeltaNorth, temp.ant1.DeltaEast, temp.ant1.DeltaUp).length(), -temp.ant1.DeltaUp); } } #endif break; } case BaseVectorGeod: { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" // suppress -Wfloat-equal as it's false positive when testing for DNU values const msg4028 &temp = sbf_msg.data.msg4028u; // just breakout any consts we need for Do Not Use (DNU) reasons constexpr double doubleDNU = -2e-10; constexpr uint16_t uint16DNU = 65535; check_new_itow(temp.TOW, sbf_msg.length); if (temp.N == 0) { // no sub blocks so just bail, we can't do anything useful here state.rtk_num_sats = 0; state.rtk_age_ms = 0; state.rtk_baseline_y_mm = 0; state.rtk_baseline_x_mm = 0; state.rtk_baseline_z_mm = 0; break; } state.rtk_num_sats = temp.info.NrSV; state.rtk_age_ms = (temp.info.CorrAge != 65535) ? ((uint32_t)temp.info.CorrAge) * 10 : 0; // copy the position as long as the data isn't DNU, we require NED, and heading before accepting any of it if ((temp.info.DeltaEast != doubleDNU) && (temp.info.DeltaNorth != doubleDNU) && (temp.info.DeltaUp != doubleDNU) && (temp.info.Azimuth != uint16DNU)) { state.rtk_baseline_y_mm = temp.info.DeltaEast * 1e3; state.rtk_baseline_x_mm = temp.info.DeltaNorth * 1e3; state.rtk_baseline_z_mm = temp.info.DeltaUp * -1e3; #if GPS_MOVING_BASELINE // copy the baseline data as a yaw source if (option_set(AP_GPS::DriverOptions::SBF_UseBaseForYaw)) { calculate_moving_base_yaw(temp.info.Azimuth * 0.01f + 180.0f, Vector3f(temp.info.DeltaNorth, temp.info.DeltaEast, temp.info.DeltaUp).length(), -temp.info.DeltaUp); } #endif // GPS_MOVING_BASELINE } else if (option_set(AP_GPS::DriverOptions::SBF_UseBaseForYaw)) { state.rtk_baseline_y_mm = 0; state.rtk_baseline_x_mm = 0; state.rtk_baseline_z_mm = 0; state.have_gps_yaw = false; } #pragma GCC diagnostic pop break; } } return false; } void AP_GPS_SBF::broadcast_configuration_failure_reason(void) const { if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE && config_step != Config_State::Complete) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %u: SBF is not fully configured (%u/%u/%u/%u)", state.instance + 1, (unsigned)config_step, _init_blob_index, (unsigned)ARRAY_SIZE(_initialisation_blob), (unsigned)ARRAY_SIZE(sbas_on_blob)); } } bool AP_GPS_SBF::is_configured (void) const { return ((gps._auto_config == AP_GPS::GPS_AUTO_CONFIG_DISABLE) || (config_step == Config_State::Complete) ||AP_SIM_GPS_SBF_ENABLED); } bool AP_GPS_SBF::is_healthy (void) const { return (RxError & RX_ERROR_MASK) == 0; } void AP_GPS_SBF::mount_disk (void) const { const char* command = "emd, DSK1, Mount\n"; Debug("Mounting disk"); port->write((const uint8_t*)command, strlen(command)); } void AP_GPS_SBF::unmount_disk (void) const { const char* command = "emd, DSK1, Unmount\n"; GCS_SEND_TEXT(MAV_SEVERITY_DEBUG, "SBF unmounting disk"); port->write((const uint8_t*)command, strlen(command)); } bool AP_GPS_SBF::prepare_for_arming(void) { bool is_logging = true; // assume that its logging until proven otherwise if (gps._raw_data) { if (!(RxState & SBF_DISK_MOUNTED)){ is_logging = false; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: SBF disk is not mounted", state.instance + 1); // simply attempt to mount the disk, no need to check if the command was // ACK/NACK'd as we don't continuously attempt to remount the disk GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: Attempting to mount disk", state.instance + 1); mount_disk(); // reset the flag to indicate if we should be logging _has_been_armed = false; } else if (RxState & SBF_DISK_FULL) { is_logging = false; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: SBF disk is full", state.instance + 1); } else if (!(RxState & SBF_DISK_ACTIVITY)) { is_logging = false; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: SBF is not currently logging", state.instance + 1); } } return is_logging; } #endif