/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static void get_stabilize_roll(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - ahrs.roll_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt); // output control - we do not use rate controllers for helicopters so send directly to servos g.rc_1.servo_out = constrain(target_angle, -4500, 4500); #else // convert to desired Rate: int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle); int16_t i_stab; if(labs(ahrs.roll_sensor) < 500) { target_angle = constrain(target_angle, -500, 500); i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt); }else{ i_stab = g.pi_stabilize_roll.get_integrator(); } // set targets for rate controller set_roll_rate_target(target_rate+i_stab, EARTH_FRAME); #endif } static void get_stabilize_pitch(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - ahrs.pitch_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt); // output control - we do not use rate controllers for helicopters so send directly to servos g.rc_2.servo_out = constrain(target_angle, -4500, 4500); #else // convert to desired Rate: int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle); int16_t i_stab; if(labs(ahrs.pitch_sensor) < 500) { target_angle = constrain(target_angle, -500, 500); i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt); }else{ i_stab = g.pi_stabilize_pitch.get_integrator(); } // set targets for rate controller set_pitch_rate_target(target_rate + i_stab, EARTH_FRAME); #endif } static void get_stabilize_yaw(int32_t target_angle) { int32_t target_rate,i_term; int32_t angle_error; int32_t output = 0; // angle error angle_error = wrap_180(target_angle - ahrs.yaw_sensor); // limit the error we're feeding to the PID #if FRAME_CONFIG == HELI_FRAME angle_error = constrain(angle_error, -4500, 4500); #else angle_error = constrain(angle_error, -4000, 4000); #endif // convert angle error to desired Rate: target_rate = g.pi_stabilize_yaw.get_p(angle_error); i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt); // do not use rate controllers for helicotpers with external gyros #if FRAME_CONFIG == HELI_FRAME if(motors.ext_gyro_enabled) { g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500); } #endif #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value); } } #endif // set targets for rate controller set_yaw_rate_target(target_rate+i_term, EARTH_FRAME); } static void get_acro_roll(int32_t target_rate) { target_rate = target_rate * g.acro_p; // set targets for rate controller set_roll_rate_target(target_rate, BODY_FRAME); } static void get_acro_pitch(int32_t target_rate) { target_rate = target_rate * g.acro_p; // set targets for rate controller set_pitch_rate_target(target_rate, BODY_FRAME); } static void get_acro_yaw(int32_t target_rate) { target_rate = target_rate * g.acro_p; // set targets for rate controller set_yaw_rate_target(target_rate, BODY_FRAME); } // Roll with rate input and stabilized in the earth frame static void get_roll_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired roll rate int32_t target_rate = stick_angle * g.acro_p - (roll_axis * g.acro_balance_roll)/100; // convert the input to the desired roll rate roll_axis += target_rate * G_Dt; roll_axis = wrap_180(roll_axis); // ensure that we don't reach gimbal lock if (roll_axis > 4500 || roll_axis < -4500) { roll_axis = constrain(roll_axis, -4500, 4500); angle_error = wrap_180(roll_axis - ahrs.roll_sensor); } else { // angle error with maximum of +- max_angle_overshoot angle_error = wrap_180(roll_axis - ahrs.roll_sensor); angle_error = constrain(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT); } if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { angle_error = 0; } // update roll_axis to be within max_angle_overshoot of our current heading roll_axis = wrap_180(angle_error + ahrs.roll_sensor); // set earth frame targets for rate controller // set earth frame targets for rate controller set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME); } // Pitch with rate input and stabilized in the earth frame static void get_pitch_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired pitch rate int32_t target_rate = stick_angle * g.acro_p - (pitch_axis * g.acro_balance_pitch)/100; // convert the input to the desired pitch rate pitch_axis += target_rate * G_Dt; pitch_axis = wrap_180(pitch_axis); // ensure that we don't reach gimbal lock if (pitch_axis > 4500 || pitch_axis < -4500) { pitch_axis = constrain(pitch_axis, -4500, 4500); angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); } else { // angle error with maximum of +- max_angle_overshoot angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); angle_error = constrain(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT); } if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { angle_error = 0; } // update pitch_axis to be within max_angle_overshoot of our current heading pitch_axis = wrap_180(angle_error + ahrs.pitch_sensor); // set earth frame targets for rate controller set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME); } // Yaw with rate input and stabilized in the earth frame static void get_yaw_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired yaw rate int32_t target_rate = stick_angle * g.acro_p; // convert the input to the desired yaw rate nav_yaw += target_rate * G_Dt; nav_yaw = wrap_360(nav_yaw); // calculate difference between desired heading and current heading angle_error = wrap_180(nav_yaw - ahrs.yaw_sensor); // limit the maximum overshoot angle_error = constrain(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT); if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { angle_error = 0; } // update nav_yaw to be within max_angle_overshoot of our current heading nav_yaw = wrap_360(angle_error + ahrs.yaw_sensor); // set earth frame targets for rate controller set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME); } // set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { roll_rate_target_bf = desired_rate; }else{ roll_rate_target_ef = desired_rate; } } // set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { pitch_rate_target_bf = desired_rate; }else{ pitch_rate_target_ef = desired_rate; } } // set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { yaw_rate_target_bf = desired_rate; }else{ yaw_rate_target_ef = desired_rate; } } // update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers void update_rate_contoller_targets() { if( rate_targets_frame == EARTH_FRAME ) { // convert earth frame rates to body frame rates roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef; pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef; yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef; } } // run roll, pitch and yaw rate controllers and send output to motors // targets for these controllers comes from stabilize controllers void run_rate_controllers() { #if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro if(!motors.ext_gyro_enabled) { g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); } #else // call rate controllers g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf); g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf); g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); #endif } static int16_t get_rate_roll(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.x * DEGX100); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_roll.get_p(rate_error); // freeze I term if we've breached roll-pitch limits if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { i = g.pid_rate_roll.get_integrator(); }else{ i = g.pid_rate_roll.get_i(rate_error, G_Dt); } d = g.pid_rate_roll.get_d(rate_error, G_Dt); output = p + i + d; // constrain output output = constrain(output, -5000, 5000); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d /*-rate_d_dampener*/, output, tuning_value); } } #endif // output control return output; } static int16_t get_rate_pitch(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.y * DEGX100); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_pitch.get_p(rate_error); // freeze I term if we've breached roll-pitch limits if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { i = g.pid_rate_pitch.get_integrator(); }else{ i = g.pid_rate_pitch.get_i(rate_error, G_Dt); } d = g.pid_rate_pitch.get_d(rate_error, G_Dt); output = p + i + d; // constrain output output = constrain(output, -5000, 5000); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d/*-rate_d_dampener*/, output, tuning_value); } } #endif // output control return output; } static int16_t get_rate_yaw(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t rate_error; int32_t output; // rate control rate_error = target_rate - (omega.z * DEGX100); // separately calculate p, i, d values for logging p = g.pid_rate_yaw.get_p(rate_error); // freeze I term if we've breached yaw limits if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) { i = g.pid_rate_yaw.get_integrator(); }else{ i = g.pid_rate_yaw.get_i(rate_error, G_Dt); } d = g.pid_rate_yaw.get_d(rate_error, G_Dt); output = p+i+d; output = constrain(output, -4500, 4500); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif #if FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME // constrain output return output; #else // output control: int16_t yaw_limit = 2200 + abs(g.rc_4.control_in); // smoother Yaw control: return constrain(output, -yaw_limit, yaw_limit); #endif } static int16_t get_throttle_rate(int16_t z_target_speed) { int32_t p,i,d; // used to capture pid values for logging int16_t z_rate_error, output = 0; // calculate rate error #if INERTIAL_NAV == ENABLED z_rate_error = z_target_speed - inertial_nav._velocity.z; // calc the speed error #else z_rate_error = z_target_speed - climb_rate; // calc the speed error #endif int16_t tmp = ((int32_t)z_target_speed * (int32_t)g.throttle_cruise) / 280; tmp = min(tmp, 500); if(z_target_speed < 0) tmp = -tmp; // separately calculate p, i, d values for logging p = g.pid_throttle.get_p(z_rate_error); // freeze I term if we've breached throttle limits if(motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT)) { i = g.pid_throttle.get_integrator(); }else{ i = g.pid_throttle.get_i(z_rate_error, .02); } d = g.pid_throttle.get_d(z_rate_error, .02); // // limit the rate output += constrain(p+i+d, -150, 200); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_THROTTLE_KP ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz log_counter = 0; Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value); } } #endif return output; } // Keeps old data out of our calculation / logs static void reset_nav_params(void) { nav_throttle = 0; // always start Circle mode at same angle circle_angle = 0; // We must be heading to a new WP, so XTrack must be 0 crosstrack_error = 0; // Will be set by new command target_bearing = 0; // Will be set by new command wp_distance = 0; // Will be set by new command, used by loiter long_error = 0; lat_error = 0; nav_lon = 0; nav_lat = 0; nav_roll = 0; nav_pitch = 0; auto_roll = 0; auto_pitch = 0; // make sure we stick to Nav yaw on takeoff auto_yaw = nav_yaw; } /* * reset all I integrators */ static void reset_I_all(void) { reset_rate_I(); reset_stability_I(); reset_wind_I(); reset_throttle_I(); reset_optflow_I(); // This is the only place we reset Yaw g.pi_stabilize_yaw.reset_I(); } static void reset_rate_I() { g.pid_rate_roll.reset_I(); g.pid_rate_pitch.reset_I(); g.pid_rate_yaw.reset_I(); } static void reset_optflow_I(void) { g.pid_optflow_roll.reset_I(); g.pid_optflow_pitch.reset_I(); of_roll = 0; of_pitch = 0; } static void reset_wind_I(void) { // Wind Compensation // this i is not currently being used, but we reset it anyway // because someone may modify it and not realize it, causing a bug g.pi_loiter_lat.reset_I(); g.pi_loiter_lon.reset_I(); g.pid_loiter_rate_lat.reset_I(); g.pid_loiter_rate_lon.reset_I(); g.pid_nav_lat.reset_I(); g.pid_nav_lon.reset_I(); } static void reset_throttle_I(void) { // For Altitude Hold g.pi_alt_hold.reset_I(); g.pid_throttle.reset_I(); } static void reset_stability_I(void) { // Used to balance a quad // This only needs to be reset during Auto-leveling in flight g.pi_stabilize_roll.reset_I(); g.pi_stabilize_pitch.reset_I(); } /************************************************************* * throttle control ****************************************************************/ static int16_t get_angle_boost(int16_t value) { float temp = cos_pitch_x * cos_roll_x; temp = constrain(temp, .75, 1.0); return ((float)(value + 80) / temp) - (value + 80); } #if FRAME_CONFIG == HELI_FRAME // heli_angle_boost - adds a boost depending on roll/pitch values // equivalent of quad's angle_boost function // throttle value should be 0 ~ 1000 static int16_t heli_get_angle_boost(int16_t throttle) { float angle_boost_factor = cos_pitch_x * cos_roll_x; angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0); return throttle + throttle_above_mid*angle_boost_factor; } #endif // HELI_FRAME // calculate modified roll/pitch depending upon optical flow calculated position static int32_t get_of_roll(int32_t input_roll) { #ifdef OPTFLOW_ENABLED static float tot_x_cm = 0; // total distance from target static uint32_t last_of_roll_update = 0; int32_t new_roll = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_roll_update) { last_of_roll_update = optflow.last_update; // add new distance moved tot_x_cm += optflow.x_cm; // only stop roll if caller isn't modifying roll if( input_roll == 0 && current_loc.alt < 1500) { p = g.pid_optflow_roll.get_p(-tot_x_cm); i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0); new_roll = p+i+d; }else{ g.pid_optflow_roll.reset_I(); tot_x_cm = 0; p = 0; // for logging i = 0; d = 0; } // limit amount of change and maximum angle of_roll = constrain(new_roll, (of_roll-20), (of_roll+20)); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { log_counter++; if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value); } } #endif // LOGGING_ENABLED == ENABLED } // limit max angle of_roll = constrain(of_roll, -1000, 1000); return input_roll+of_roll; #else return input_roll; #endif } static int32_t get_of_pitch(int32_t input_pitch) { #ifdef OPTFLOW_ENABLED static float tot_y_cm = 0; // total distance from target static uint32_t last_of_pitch_update = 0; int32_t new_pitch = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_pitch_update ) { last_of_pitch_update = optflow.last_update; // add new distance moved tot_y_cm += optflow.y_cm; // only stop roll if caller isn't modifying pitch if( input_pitch == 0 && current_loc.alt < 1500 ) { p = g.pid_optflow_pitch.get_p(tot_y_cm); i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0); new_pitch = p + i + d; }else{ tot_y_cm = 0; g.pid_optflow_pitch.reset_I(); p = 0; // for logging i = 0; d = 0; } // limit amount of change of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20)); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { log_counter++; if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value); } } #endif // LOGGING_ENABLED == ENABLED } // limit max angle of_pitch = constrain(of_pitch, -1000, 1000); return input_pitch+of_pitch; #else return input_pitch; #endif }