// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Sensors are not available in HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE static void ReadSCP1000(void) { } #if CONFIG_SONAR == ENABLED static void init_sonar(void) { #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC sonar.calculate_scaler(g.sonar_type, 3.3); #else sonar.calculate_scaler(g.sonar_type, 5.0); #endif } #endif static void init_barometer(void) { barometer.calibrate(mavlink_delay); ahrs.set_barometer(&barometer); gcs_send_text_P(SEVERITY_LOW, PSTR("barometer calibration complete")); } // return barometric altitude in centimeters static int32_t read_barometer(void) { barometer.read(); return baro_filter.apply(barometer.get_altitude() * 100.0); } // return sonar altitude in centimeters static int16_t read_sonar(void) { #if CONFIG_SONAR == ENABLED int16_t temp_alt = sonar.read(); #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = cos_pitch_x * cos_roll_x; temp = max(temp, 0.707); temp_alt = (float)temp_alt * temp; #endif return temp_alt; #else return 0; #endif } #endif // HIL_MODE != HIL_MODE_ATTITUDE static void init_compass() { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft if (!compass.init() || !compass.read()) { // make sure we don't pass a broken compass to DCM cliSerial->println_P(PSTR("COMPASS INIT ERROR")); return; } ahrs.set_compass(&compass); #if SECONDARY_DMP_ENABLED == ENABLED ahrs2.set_compass(&compass); #endif } static void init_optflow() { #if OPTFLOW == ENABLED if( optflow.init(false, &timer_scheduler, &spi_semaphore, &spi3_semaphore) == false ) { g.optflow_enabled = false; cliSerial->print_P(PSTR("\nFailed to Init OptFlow ")); }else{ // suspend timer while we set-up SPI communication timer_scheduler.suspend_timer(); optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft optflow.set_frame_rate(2000); // set minimum update rate (which should lead to maximum low light performance optflow.set_resolution(OPTFLOW_RESOLUTION); // set optical flow sensor's resolution optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view // resume timer timer_scheduler.resume_timer(); } #endif // OPTFLOW == ENABLED } // read_battery - check battery voltage and current and invoke failsafe if necessary // called at 10hz #define BATTERY_FS_COUNTER 100 // 100 iterations at 10hz is 10 seconds static void read_battery(void) { static uint8_t low_battery_counter = 0; if(g.battery_monitoring == 0) { battery_voltage1 = 0; return; } if(g.battery_monitoring == 3 || g.battery_monitoring == 4) { static AP_AnalogSource_Arduino batt_volt_pin(g.battery_volt_pin); batt_volt_pin.set_pin(g.battery_volt_pin); battery_voltage1 = BATTERY_VOLTAGE(batt_volt_pin.read_average()); } if(g.battery_monitoring == 4) { static AP_AnalogSource_Arduino batt_curr_pin(g.battery_curr_pin); batt_curr_pin.set_pin(g.battery_curr_pin); current_amps1 = CURRENT_AMPS(batt_curr_pin.read_average()); current_total1 += current_amps1 * 0.02778; // called at 100ms on average, .0002778 is 1/3600 (conversion to hours) } // check for low voltage or current if the low voltage check hasn't already been triggered if (!ap.low_battery && ( battery_voltage1 < g.low_voltage || (g.battery_monitoring == 4 && current_total1 > g.pack_capacity))) { low_battery_counter++; if( low_battery_counter >= BATTERY_FS_COUNTER ) { low_battery_counter = BATTERY_FS_COUNTER; // ensure counter does not overflow low_battery_event(); } }else{ // reset low_battery_counter in case it was a temporary voltage dip low_battery_counter = 0; } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void read_receiver_rssi(void) { RSSI_pin.set_pin(g.rssi_pin); float ret = RSSI_pin.read(); receiver_rssi = constrain(ret, 0, 255); }