/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_VisualOdom_config.h" #if HAL_VISUALODOM_ENABLED #include "AP_VisualOdom.h" #include "AP_VisualOdom_Backend.h" #include "AP_VisualOdom_MAV.h" #include "AP_VisualOdom_IntelT265.h" #include extern const AP_HAL::HAL &hal; // table of user settable parameters const AP_Param::GroupInfo AP_VisualOdom::var_info[] = { // @Param: _TYPE // @DisplayName: Visual odometry camera connection type // @Description: Visual odometry camera connection type // @Values: 0:None,1:MAVLink,2:IntelT265,3:VOXL(ModalAI) // @User: Advanced // @RebootRequired: True AP_GROUPINFO_FLAGS("_TYPE", 0, AP_VisualOdom, _type, 0, AP_PARAM_FLAG_ENABLE), // @Param: _POS_X // @DisplayName: Visual odometry camera X position offset // @Description: X position of the camera in body frame. Positive X is forward of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: _POS_Y // @DisplayName: Visual odometry camera Y position offset // @Description: Y position of the camera in body frame. Positive Y is to the right of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: _POS_Z // @DisplayName: Visual odometry camera Z position offset // @Description: Z position of the camera in body frame. Positive Z is down from the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO("_POS", 1, AP_VisualOdom, _pos_offset, 0.0f), // @Param: _ORIENT // @DisplayName: Visual odometery camera orientation // @Description: Visual odometery camera orientation // @Values: 0:Forward, 2:Right, 4:Back, 6:Left, 24:Up, 25:Down // @User: Advanced AP_GROUPINFO("_ORIENT", 2, AP_VisualOdom, _orientation, ROTATION_NONE), // @Param: _SCALE // @DisplayName: Visual odometry scaling factor // @Description: Visual odometry scaling factor applied to position estimates from sensor // @User: Advanced AP_GROUPINFO("_SCALE", 3, AP_VisualOdom, _pos_scale, 1.0f), // @Param: _DELAY_MS // @DisplayName: Visual odometry sensor delay // @Description: Visual odometry sensor delay relative to inertial measurements // @Units: ms // @Range: 0 250 // @User: Advanced AP_GROUPINFO("_DELAY_MS", 4, AP_VisualOdom, _delay_ms, 10), // @Param: _VEL_M_NSE // @DisplayName: Visual odometry velocity measurement noise // @Description: Visual odometry velocity measurement noise in m/s // @Units: m/s // @Range: 0.05 5.0 // @User: Advanced AP_GROUPINFO("_VEL_M_NSE", 5, AP_VisualOdom, _vel_noise, 0.1), // @Param: _POS_M_NSE // @DisplayName: Visual odometry position measurement noise // @Description: Visual odometry position measurement noise minimum (meters). This value will be used if the sensor provides a lower noise value (or no noise value) // @Units: m // @Range: 0.1 10.0 // @User: Advanced AP_GROUPINFO("_POS_M_NSE", 6, AP_VisualOdom, _pos_noise, 0.2f), // @Param: _YAW_M_NSE // @DisplayName: Visual odometry yaw measurement noise // @Description: Visual odometry yaw measurement noise minimum (radians), This value will be used if the sensor provides a lower noise value (or no noise value) // @Units: rad // @Range: 0.05 1.0 // @User: Advanced AP_GROUPINFO("_YAW_M_NSE", 7, AP_VisualOdom, _yaw_noise, 0.2f), AP_GROUPEND }; AP_VisualOdom::AP_VisualOdom() { AP_Param::setup_object_defaults(this, var_info); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_singleton != nullptr) { AP_HAL::panic("must be singleton"); } #endif _singleton = this; } // detect and initialise any sensors void AP_VisualOdom::init() { // create backend switch (VisualOdom_Type(_type.get())) { case VisualOdom_Type::None: // do nothing break; #if AP_VISUALODOM_MAV_ENABLED case VisualOdom_Type::MAV: _driver = new AP_VisualOdom_MAV(*this); break; #endif #if AP_VISUALODOM_INTELT265_ENABLED case VisualOdom_Type::IntelT265: case VisualOdom_Type::VOXL: _driver = new AP_VisualOdom_IntelT265(*this); break; #endif } } // return true if sensor is enabled bool AP_VisualOdom::enabled() const { return ((_type != VisualOdom_Type::None)); } // return true if sensor is basically healthy (we are receiving data) bool AP_VisualOdom::healthy() const { if (!enabled()) { return false; } if (_driver == nullptr) { return false; } return _driver->healthy(); } #if HAL_GCS_ENABLED // consume vision_position_delta mavlink messages void AP_VisualOdom::handle_vision_position_delta_msg(const mavlink_message_t &msg) { // exit immediately if not enabled if (!enabled()) { return; } // call backend if (_driver != nullptr) { _driver->handle_vision_position_delta_msg(msg); } } #endif // general purpose method to consume position estimate data and send to EKF // distances in meters, roll, pitch and yaw are in radians void AP_VisualOdom::handle_pose_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, float roll, float pitch, float yaw, float posErr, float angErr, uint8_t reset_counter) { // exit immediately if not enabled if (!enabled()) { return; } // call backend if (_driver != nullptr) { // convert attitude to quaternion and call backend Quaternion attitude; attitude.from_euler(roll, pitch, yaw); _driver->handle_pose_estimate(remote_time_us, time_ms, x, y, z, attitude, posErr, angErr, reset_counter); } } // general purpose method to consume position estimate data and send to EKF void AP_VisualOdom::handle_pose_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude, float posErr, float angErr, uint8_t reset_counter) { // exit immediately if not enabled if (!enabled()) { return; } // call backend if (_driver != nullptr) { _driver->handle_pose_estimate(remote_time_us, time_ms, x, y, z, attitude, posErr, angErr, reset_counter); } } void AP_VisualOdom::handle_vision_speed_estimate(uint64_t remote_time_us, uint32_t time_ms, const Vector3f &vel, uint8_t reset_counter) { // exit immediately if not enabled if (!enabled()) { return; } // call backend if (_driver != nullptr) { _driver->handle_vision_speed_estimate(remote_time_us, time_ms, vel, reset_counter); } } // request sensor's yaw be aligned with vehicle's AHRS/EKF attitude void AP_VisualOdom::request_align_yaw_to_ahrs() { // exit immediately if not enabled if (!enabled()) { return; } // call backend if (_driver != nullptr) { _driver->request_align_yaw_to_ahrs(); } } // update position offsets to align to AHRS position. Should only be called when this library is not being used as the position source void AP_VisualOdom::align_position_to_ahrs(bool align_xy, bool align_z) { // exit immediately if not enabled if (!enabled()) { return; } // call backend if (_driver != nullptr) { _driver->align_position_to_ahrs(align_xy, align_z); } } // returns false if we fail arming checks, in which case the buffer will be populated with a failure message bool AP_VisualOdom::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { // exit immediately if not enabled if (!enabled()) { return true; } // if no backend we must have failed to create because out of memory if (_driver == nullptr) { hal.util->snprintf(failure_msg, failure_msg_len, "out of memory"); return false; } // check healthy if (!healthy()) { hal.util->snprintf(failure_msg, failure_msg_len, "not healthy"); return false; } // call backend specific arming check return _driver->pre_arm_check(failure_msg, failure_msg_len); } // singleton instance AP_VisualOdom *AP_VisualOdom::_singleton; namespace AP { AP_VisualOdom *visualodom() { return AP_VisualOdom::get_singleton(); } } #endif