// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_RangeFinder_PulsedLightLRF.cpp - Arduino Library for Pulsed Light's Laser Range Finder * Code by Randy Mackay. DIYDrones.com * * Sensor should be connected to the I2C port * * Variables: * bool healthy : indicates whether last communication with sensor was successful * * Methods: * take_reading(): ask the sonar to take a new distance measurement * read() : read last distance measured (in cm) * */ #include "AP_RangeFinder_PulsedLightLRF.h" #include extern const AP_HAL::HAL& hal; // Constructor ////////////////////////////////////////////////////////////// AP_RangeFinder_PulsedLightLRF::AP_RangeFinder_PulsedLightLRF(FilterInt16 *filter) : RangeFinder(NULL, filter), healthy(true), _addr(AP_RANGEFINDER_PULSEDLIGHTLRF_ADDR) { min_distance = AP_RANGEFINDER_PULSEDLIGHTLRF_MIN_DISTANCE; max_distance = AP_RANGEFINDER_PULSEDLIGHTLRF_MAX_DISTANCE; } // Public Methods ////////////////////////////////////////////////////////////// // init - simply sets the i2c address void AP_RangeFinder_PulsedLightLRF::init(uint8_t address) { // set sensor i2c address _addr = address; } // take_reading - ask sensor to make a range reading bool AP_RangeFinder_PulsedLightLRF::take_reading() { // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // exit immediately if we can't take the semaphore if (i2c_sem == NULL || !i2c_sem->take(5)) { healthy = false; return healthy; } // send command to take reading if (hal.i2c->writeRegister(_addr, AP_RANGEFINDER_PULSEDLIGHTLRF_MEASURE_REG, AP_RANGEFINDER_PULSEDLIGHTLRF_MSRREG_ACQUIRE) != 0) { healthy = false; }else{ healthy = true; } hal.scheduler->delay_microseconds(200); // return semaphore i2c_sem->give(); return healthy; } // read - return last value measured by sensor int16_t AP_RangeFinder_PulsedLightLRF::read() { uint8_t buff[2]; int16_t ret_value = 0; // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // exit immediately if we can't take the semaphore if (i2c_sem == NULL || !i2c_sem->take(5)) { healthy = false; return healthy; } // assume the worst healthy = false; // read the high byte if (hal.i2c->readRegisters(_addr, AP_RANGEFINDER_PULSEDLIGHTLRF_DISTHIGH_REG, 1, &buff[0]) == 0) { hal.scheduler->delay_microseconds(200); // read the low byte if (hal.i2c->readRegisters(_addr, AP_RANGEFINDER_PULSEDLIGHTLRF_DISTLOW_REG, 1, &buff[1]) == 0) { healthy = true; // combine results into distance ret_value = buff[0] << 8 | buff[1]; } } // ensure distance is within min and max ret_value = constrain_int16(ret_value, min_distance, max_distance); ret_value = _mode_filter->apply(ret_value); hal.scheduler->delay_microseconds(200); // return semaphore i2c_sem->give(); // kick off another reading for next time // To-Do: replace this with continuous mode take_reading(); // to-do: do we really want to return 0 if reading the distance fails? return ret_value; }