// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Swift Navigation GPS driver for ArduPilot // Origin code by Niels Joubert njoubert.com // #include #include "AP_GPS_SBP.h" #include #if GPS_RTK_AVAILABLE #define SBP_DEBUGGING 0 #define SBP_FAKE_3DLOCK 0 extern const AP_HAL::HAL& hal; #define SBP_MILLIS_BETWEEN_HEALTHCHECKS 2000U #define SBP_BASELINE_TIMEOUT_MS 1000U #define SBP_FIX_TIMEOUT_MS 1000U #define SBP_HEARTBEAT_TIMEOUT_MS 5000U #define SBP_MILLIS_BETWEEN_TRACKING_LOG 1800U #define SBP_DEBUGGING 0 #if SBP_DEBUGGING # define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) #else # define Debug(fmt, args ...) #endif /* only do detailed hardware logging on boards likely to have more log storage space */ #if GPS_RTK_AVAILABLE #define SBP_HW_LOGGING 1 #else #define SBP_HW_LOGGING 0 #endif bool AP_GPS_SBP::logging_started = false; AP_GPS_SBP::AP_GPS_SBP(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port), last_baseline_received_ms(0), last_heatbeat_received_ms(0), last_tracking_state_ms(0), iar_num_hypotheses(-1), baseline_recv_rate(0), dgps_corrections_incoming(false), rtk_corrections_incoming(false), has_new_pos_llh(false), has_new_vel_ned(false), has_new_baseline_ecef(false), has_rtk_base_pos(false), pos_msg_counter(0), vel_msg_counter(0), baseline_msg_counter(0), full_update_counter(0), crc_error_counter(0), last_healthcheck_millis(0) { parser_state.state = sbp_parser_state_t::WAITING; state.status = AP_GPS::NO_FIX; state.have_vertical_velocity = true; state.last_gps_time_ms = last_heatbeat_received_ms = last_healthcheck_millis = hal.scheduler->millis(); } bool AP_GPS_SBP::can_calculate_base_pos(void) { return (rtk_corrections_incoming && !has_rtk_base_pos); }; void AP_GPS_SBP::calculate_base_pos(void) { //INVARIANT: // Only ever capture home with motors not armed! // External driver checks whether can_raise_fix_level becomes true // and only if it can, AND motors are not armed, will be capture home! if (state.status < AP_GPS::GPS_OK_FIX_3D) { Debug("Attempting to capture home without GPS Fix available. Can't do RTK without home lat-lon."); return; } if (!rtk_corrections_incoming) { Debug("Attempting to capture home baseline without rtk corrections being received."); return; } Vector3d current_llh; Vector3d current_ecef; Vector3d current_baseline_ecef; current_llh[0] = last_sbp_pos_llh_msg.lat * DEG_TO_RAD_DOUBLE; current_llh[1] = last_sbp_pos_llh_msg.lon * DEG_TO_RAD_DOUBLE; current_llh[2] = last_sbp_pos_llh_msg.height; wgsllh2ecef(current_llh, current_ecef); current_baseline_ecef[0] = ((double)last_sbp_baseline_ecef_msg.x) / 1000.0; current_baseline_ecef[1] = ((double)last_sbp_baseline_ecef_msg.y) / 1000.0; current_baseline_ecef[2] = ((double)last_sbp_baseline_ecef_msg.z) / 1000.0; base_pos_ecef = current_ecef - current_baseline_ecef; has_rtk_base_pos = true; Debug("SBP Got Base Position! has_rtk_base_pos=%d, (%.2f, %.2f, %.2f)", has_rtk_base_pos, base_pos_ecef[0], base_pos_ecef[1], base_pos_ecef[2]); } void AP_GPS_SBP::invalidate_base_pos() { has_rtk_base_pos = false; } bool AP_GPS_SBP::read(void) { //Invariant: Calling this function processes *all* data current in the UART buffer. // //IMPORTANT NOTICE: This function is NOT CALLED for several seconds // during arming. That should not cause the driver to die. Process *all* waiting messages bool full_update = false; do { //Attempt to process one message at a time bool new_message = sbp_process(); //Attempt to update our internal state with this new message. if (update_state(new_message)) { full_update = true; full_update_counter += 1; } } while (port->available() > 0); uint32_t now = hal.scheduler->millis(); uint32_t elapsed = now - last_healthcheck_millis; if (elapsed > SBP_MILLIS_BETWEEN_HEALTHCHECKS) { last_healthcheck_millis = now; float pos_msg_hz = pos_msg_counter / (float) elapsed * 1000; float vel_msg_hz = vel_msg_counter / (float) elapsed * 1000; float baseline_msg_hz = baseline_msg_counter / (float) elapsed * 1000; float full_update_hz = full_update_counter / (float) elapsed * 1000; baseline_recv_rate = uint8_t (baseline_msg_hz * 10); pos_msg_counter = 0; vel_msg_counter = 0; baseline_msg_counter = 0; full_update_counter = 0; Debug("SBP GPS perf: Fix=(%d) CRC=(%d) Pos=(%.2fHz) Vel=(%.2fHz) Baseline=(%.2fHz) Update=(%.2fHz) DGPS=(%d) RTK=(%d) RTK_HOME=(%d) IAR=(%d)", state.status, crc_error_counter, pos_msg_hz, vel_msg_hz, baseline_msg_hz, full_update_hz, dgps_corrections_incoming, rtk_corrections_incoming, has_rtk_base_pos, iar_num_hypotheses); #if SBP_HW_LOGGING logging_log_health(pos_msg_hz, vel_msg_hz, baseline_msg_hz, full_update_hz); #endif } return full_update; } //This consolidates all the latest messages, //and the current mode the driver is in // // INVARIANT: // If in a fix mode >= 3, // returns true only if a full position and velocity update happened. // If in fix mode 0 or 1, // returns true if messages are being received or we haven't timed out bool AP_GPS_SBP::update_state(bool has_new_message) { uint32_t now = hal.scheduler->millis(); //Determine the current mode the GPS is in: DGPS or plain //Notice that this is sticky. if (has_new_baseline_ecef && (now - last_baseline_received_ms < SBP_BASELINE_TIMEOUT_MS)) { dgps_corrections_incoming = true; if (gps._min_dgps >= 100) { //Allow only IntegerRTK baselines rtk_corrections_incoming = dgps_corrections_incoming && (last_sbp_baseline_ecef_msg.flags & 0x1); } else { //Allow floatRTK baselines rtk_corrections_incoming = dgps_corrections_incoming; } } //Currently we only use relative positioning if we have RTK-level fixes, //we ignore float-level fixes bool using_relative_positioning = rtk_corrections_incoming && has_rtk_base_pos; //Drop out of RTK mode if we haven't seen a baseline for a while... if (using_relative_positioning && (now - last_baseline_received_ms > SBP_BASELINE_TIMEOUT_MS)) { dgps_corrections_incoming = false; rtk_corrections_incoming = false; using_relative_positioning = false; } //UPDATE POSITION AND VELOCITY if (!using_relative_positioning && (has_new_pos_llh && has_new_vel_ned) && (last_sbp_pos_llh_msg.tow == last_sbp_vel_ned_msg.tow)) { state.last_gps_time_ms = hal.scheduler->millis(); state.time_week_ms = last_sbp_pos_llh_msg.tow; state.location.lat = (int32_t) (last_sbp_pos_llh_msg.lat*1e7); state.location.lng = (int32_t) (last_sbp_pos_llh_msg.lon*1e7); state.location.alt = (int32_t) (last_sbp_pos_llh_msg.height*1e2); state.num_sats = last_sbp_pos_llh_msg.n_sats; update_state_velocity(); has_new_pos_llh = false; state.status = AP_GPS::GPS_OK_FIX_3D; return true; } else if (using_relative_positioning && (has_new_baseline_ecef && has_new_vel_ned) && (last_sbp_baseline_ecef_msg.tow == last_sbp_vel_ned_msg.tow)) { state.last_gps_time_ms = hal.scheduler->millis(); //Generate a new lat-lon from baseline //Grab the current baseline Vector3d current_baseline_ecef; //units are currently in mm current_baseline_ecef[0] = ((double)last_sbp_baseline_ecef_msg.x) / 1000.0; current_baseline_ecef[1] = ((double)last_sbp_baseline_ecef_msg.y) / 1000.0; current_baseline_ecef[2] = ((double)last_sbp_baseline_ecef_msg.z) / 1000.0; //Offset the reference point from that Vector3d current_pos_ecef; current_pos_ecef = base_pos_ecef + current_baseline_ecef; Vector3d current_pos_llh; wgsecef2llh(current_pos_ecef, current_pos_llh); current_pos_llh[0] *= RAD_TO_DEG_DOUBLE; current_pos_llh[1] *= RAD_TO_DEG_DOUBLE; state.time_week_ms = last_sbp_baseline_ecef_msg.tow; state.location.lat = (int32_t) (current_pos_llh[0] * 1e7); state.location.lng = (int32_t) (current_pos_llh[1] * 1e7); state.location.alt = (int32_t) (current_pos_llh[2] * 1e3); state.num_sats = last_sbp_baseline_ecef_msg.n_sats; update_state_velocity(); has_new_baseline_ecef = false; state.status = AP_GPS::GPS_OK_FIX_3D_RTK; return true; } //If we get here, //We have not been able to update the GPS state yet for this process call. //Check whether the GPS is still alive and processing messages! if (!using_relative_positioning && (now - state.last_gps_time_ms > SBP_FIX_TIMEOUT_MS)) { state.status = AP_GPS::NO_FIX; return (now - last_heatbeat_received_ms < SBP_HEARTBEAT_TIMEOUT_MS); } if (now - last_heatbeat_received_ms > SBP_HEARTBEAT_TIMEOUT_MS) { state.status = AP_GPS::NO_GPS; return false; } if (state.status < AP_GPS::GPS_OK_FIX_3D) { //If we are receiving messages, but dont have a fix yet, thats okay. return has_new_message; } else { //If we have a fix and we got here, then we're in between message synchronizations return false; } return true; } void AP_GPS_SBP::update_state_velocity(void) { state.time_week_ms = last_sbp_vel_ned_msg.tow; state.velocity[0] = (float)(last_sbp_vel_ned_msg.n / 1000.0); state.velocity[1] = (float)(last_sbp_vel_ned_msg.e / 1000.0); state.velocity[2] = (float)(last_sbp_vel_ned_msg.d / 1000.0); float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1]; state.ground_speed = safe_sqrt(ground_vector_sq); state.ground_course_cd = (int32_t) 100*ToDeg(atan2f(state.velocity[1], state.velocity[0])); if (state.ground_course_cd < 0) { state.ground_course_cd += 36000; } has_new_vel_ned = false; } //This attempts to read a SINGLE SBP messages from the incoming port. //Returns true if a new message was read, false if we failed to read a message. bool AP_GPS_SBP::sbp_process() { while (port->available() > 0) { uint8_t temp = port->read(); uint16_t crc; //This switch reads one character at a time, //parsing it into buffers until a full message is dispatched switch(parser_state.state) { case sbp_parser_state_t::WAITING: if (temp == SBP_PREAMBLE) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_TYPE; } break; case sbp_parser_state_t::GET_TYPE: *((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_SENDER; } break; case sbp_parser_state_t::GET_SENDER: *((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_LEN; } break; case sbp_parser_state_t::GET_LEN: parser_state.msg_len = temp; parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_MSG; break; case sbp_parser_state_t::GET_MSG: *((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= parser_state.msg_len) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_CRC; } break; case sbp_parser_state_t::GET_CRC: *((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.state = sbp_parser_state_t::WAITING; crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0); crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc); crc = crc16_ccitt(&(parser_state.msg_len), 1, crc); crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc); if (parser_state.crc == crc) { //OK, we have a valid message. Dispatch the appropriate function: switch(parser_state.msg_type) { case SBP_POS_ECEF_MSGTYPE: sbp_process_pos_ecef(parser_state.msg_buff); break; case SBP_POS_LLH_MSGTYPE: sbp_process_pos_llh(parser_state.msg_buff); break; case SBP_BASELINE_ECEF_MSGTYPE: sbp_process_baseline_ecef(parser_state.msg_buff); break; case SBP_BASELINE_NED_MSGTYPE: sbp_process_baseline_ned(parser_state.msg_buff); break; case SBP_VEL_ECEF_MSGTYPE: sbp_process_vel_ecef(parser_state.msg_buff); break; case SBP_VEL_NED_MSGTYPE: sbp_process_vel_ned(parser_state.msg_buff); break; case SBP_GPS_TIME_MSGTYPE: sbp_process_gpstime(parser_state.msg_buff); break; case SBP_DOPS_MSGTYPE: sbp_process_dops(parser_state.msg_buff); break; case SBP_TRACKING_STATE_MSGTYPE: sbp_process_tracking_state(parser_state.msg_buff, parser_state.msg_len); break; case SBP_IAR_STATE_MSGTYPE: sbp_process_iar_state(parser_state.msg_buff); break; case SBP_HEARTBEAT_MSGTYPE: sbp_process_heartbeat(parser_state.msg_buff); break; case SBP_STARTUP_MSGTYPE: sbp_process_startup(parser_state.msg_buff); break; } return true; } else { Debug("CRC Error Occurred!"); crc_error_counter += 1; } } break; default: parser_state.state = sbp_parser_state_t::WAITING; break; } } //We have parsed all the waiting messages return false; } void AP_GPS_SBP::sbp_process_heartbeat(uint8_t* msg) { last_heatbeat_received_ms = hal.scheduler->millis(); } void AP_GPS_SBP::sbp_process_gpstime(uint8_t* msg) { struct sbp_gps_time_t* t = (struct sbp_gps_time_t*)msg; state.time_week = t->wn; state.time_week_ms = t->tow; } void AP_GPS_SBP::sbp_process_dops(uint8_t* msg) { struct sbp_dops_t* d = (struct sbp_dops_t*) msg; state.time_week_ms = d->tow; state.hdop = d->hdop; } void AP_GPS_SBP::sbp_process_pos_ecef(uint8_t* msg) { //Using LLH, not ECEF } void AP_GPS_SBP::sbp_process_pos_llh(uint8_t* msg) { struct sbp_pos_llh_t* pos = (struct sbp_pos_llh_t*)msg; last_sbp_pos_llh_msg = *pos; has_new_pos_llh = true; #if SBP_DEBUGGING || SBP_HW_LOGGING pos_msg_counter += 1; #endif #if SBP_HW_LOGGING logging_log_llh(pos); #endif } void AP_GPS_SBP::sbp_process_baseline_ecef(uint8_t* msg) { struct sbp_baseline_ecef_t* b = (struct sbp_baseline_ecef_t*)msg; last_sbp_baseline_ecef_msg = *b; last_baseline_received_ms = hal.scheduler->millis(); has_new_baseline_ecef = true; #if SBP_DEBUGGING || SBP_HW_LOGGING baseline_msg_counter += 1; #endif #if SBP_HW_LOGGING logging_log_baseline_ecef(b); #endif } void AP_GPS_SBP::sbp_process_baseline_ned(uint8_t* msg) { //Currently we use ECEF baselines. //This is just for logging purposes. struct sbp_baseline_ned_t* b = (struct sbp_baseline_ned_t*)msg; last_sbp_baseline_ned_msg = *b; } void AP_GPS_SBP::sbp_process_vel_ecef(uint8_t* msg) { //Currently we use NED velocity. } void AP_GPS_SBP::sbp_process_vel_ned(uint8_t* msg) { struct sbp_vel_ned_t* vel = (struct sbp_vel_ned_t*)msg; last_sbp_vel_ned_msg = *vel; has_new_vel_ned = true; #if SBP_DEBUGGING || SBP_HW_LOGGING vel_msg_counter += 1; #endif } void AP_GPS_SBP::sbp_process_tracking_state(uint8_t* msg, uint8_t len) { uint32_t now = hal.scheduler->millis(); struct sbp_tracking_state_t* tracking_state = (struct sbp_tracking_state_t*)msg; last_sbp_tracking_state_msg = *tracking_state; uint8_t num = len / sizeof(sbp_tracking_state_t); last_sbp_tracking_state_msg_num = num; //Rate-limit the tracking state messages to no more than 1.8 seconds if (now - last_tracking_state_ms > SBP_MILLIS_BETWEEN_TRACKING_LOG) { last_tracking_state_ms = now; #ifdef SBP_HW_LOGGING logging_log_tracking_state(tracking_state, num); #endif } } void AP_GPS_SBP::sbp_process_iar_state(uint8_t* msg) { struct sbp_iar_state_t* iar_state = (struct sbp_iar_state_t*)msg; iar_num_hypotheses = (int32_t) iar_state->num_hypotheses; } void AP_GPS_SBP::sbp_process_startup(uint8_t* msg) { invalidate_base_pos(); } bool AP_GPS_SBP::_detect(struct SBP_detect_state &state, uint8_t data) { //This switch reads one character at a time, //if we find something that looks like our preamble //we'll try to read the full message length, calculating the CRC. //If the CRC matches, we have a SBP GPS! switch(state.state) { case SBP_detect_state::WAITING: if (data == SBP_PREAMBLE) { state.n_read = 0; state.crc_so_far = 0; state.state = SBP_detect_state::GET_TYPE; } break; case SBP_detect_state::GET_TYPE: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP_detect_state::GET_SENDER; } break; case SBP_detect_state::GET_SENDER: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP_detect_state::GET_LEN; } break; case SBP_detect_state::GET_LEN: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.msg_len = data; state.n_read = 0; state.state = SBP_detect_state::GET_MSG; break; case SBP_detect_state::GET_MSG: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= state.msg_len) { state.n_read = 0; state.state = SBP_detect_state::GET_CRC; } break; case SBP_detect_state::GET_CRC: *((uint8_t*)&(state.crc) + state.n_read) = data; state.n_read += 1; if (state.n_read >= 2) { state.state = SBP_detect_state::WAITING; return state.crc == state.crc_so_far; } break; default: state.state = SBP_detect_state::WAITING; break; } return false; } void AP_GPS_SBP::send_mavlink_gps_rtk(mavlink_channel_t chan) { uint8_t health = dgps_corrections_incoming | (rtk_corrections_incoming << 1) | (has_rtk_base_pos << 2); mavlink_msg_gps_rtk_send( chan, last_baseline_received_ms, // Time since boot of last baseline message received in ms. AP_GPS::GPS_TYPE_SBP, // Identification of connected RTK receiver. state.time_week, // GPS Week Number of last baseline last_sbp_baseline_ned_msg.tow, // GPS Time of Week of last baseline health, // GPS-specific health report for RTK data. baseline_recv_rate, // Rate of baseline messages being received by GPS, in HZ*10 last_sbp_baseline_ned_msg.n_sats, // Current number of sats used for RTK calculation. 1, // Coordinate system of baseline. 0 == ECEF, 1 == NED last_sbp_baseline_ned_msg.n, // Current baseline in ECEF x or NED north component in mm last_sbp_baseline_ned_msg.e, // Current baseline in ECEF y or NED east component in mm last_sbp_baseline_ned_msg.d, // Current baseline in ECEF z or NED down component in mm last_sbp_baseline_ned_msg.h_accuracy, // Current estimate of baseline accuracy. iar_num_hypotheses // Current number of integer ambiguity hypotheses. ); } #if GPS_MAX_INSTANCES > 1 void AP_GPS_SBP::send_mavlink_gps2_rtk(mavlink_channel_t chan) { uint8_t health = dgps_corrections_incoming | (rtk_corrections_incoming << 1) | (has_rtk_base_pos << 2); mavlink_msg_gps2_rtk_send( chan, last_baseline_received_ms, // Time since boot of last baseline message received in ms. AP_GPS::GPS_TYPE_SBP, // Identification of connected RTK receiver. state.time_week, // GPS Week Number of last baseline last_sbp_baseline_ned_msg.tow, // GPS Time of Week of last baseline health, // GPS-specific health report for RTK data. baseline_recv_rate, // Rate of baseline messages being received by GPS, in HZ*10 last_sbp_baseline_ned_msg.n_sats, // Current number of sats used for RTK calculation. 1, // Coordinate system of baseline. 0 == ECEF, 1 == NED last_sbp_baseline_ned_msg.n, // Current baseline in ECEF x or NED north component in mm last_sbp_baseline_ned_msg.e, // Current baseline in ECEF y or NED east component in mm last_sbp_baseline_ned_msg.d, // Current baseline in ECEF z or NED down component in mm last_sbp_baseline_ned_msg.h_accuracy, // Current estimate of baseline accuracy. iar_num_hypotheses // Current number of integer ambiguity hypotheses. ); } #endif #if SBP_HW_LOGGING #define LOG_MSG_SBPHEALTH 202 #define LOG_MSG_SBPLLH 203 #define LOG_MSG_SBPBASELINE 204 #define LOG_MSG_SBPTRACKING1 205 #define LOG_MSG_SBPTRACKING2 206 struct PACKED log_SbpHealth { LOG_PACKET_HEADER; uint32_t timestamp; float pos_msg_hz; float vel_msg_hz; float baseline_msg_hz; float full_update_hz; uint32_t crc_error_counter; uint8_t dgps_corrections_incoming; uint8_t rtk_corrections_incoming; uint8_t has_rtk_base_pos; int32_t iar_num_hypotheses; }; struct PACKED log_SbpLLH { LOG_PACKET_HEADER; uint32_t timestamp; uint32_t tow; int32_t lat; int32_t lon; int32_t alt; uint8_t n_sats; }; struct PACKED log_SbpBaseline { LOG_PACKET_HEADER; uint32_t timestamp; uint32_t tow; //< GPS Time of Week of ECEF Baseline (unit: ms) int32_t x; //< Baseline ECEF X coordinate int32_t y; //< Baseline ECEF Y coordinate int32_t z; //< Baseline ECEF Z coordinate int32_t length; //< Baseline length uint16_t accuracy; //< Horizontal position accuracy estimate (unit: mm) uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags (reserved) }; struct PACKED log_SbpTracking1 { LOG_PACKET_HEADER; uint32_t timestamp; uint8_t ch1_prn; float ch1_cn0; uint8_t ch2_prn; float ch2_cn0; uint8_t ch3_prn; float ch3_cn0; uint8_t ch4_prn; float ch4_cn0; uint8_t ch5_prn; float ch5_cn0; uint8_t ch6_prn; float ch6_cn0; uint8_t ch7_prn; float ch7_cn0; }; struct PACKED log_SbpTracking2 { LOG_PACKET_HEADER; uint32_t timestamp; uint8_t ch8_prn; float ch8_cn0; uint8_t ch9_prn; float ch9_cn0; uint8_t ch10_prn; float ch10_cn0; uint8_t ch11_prn; float ch11_cn0; uint8_t ch12_prn; float ch12_cn0; uint8_t ch13_prn; float ch13_cn0; uint8_t ch14_prn; float ch14_cn0; }; static const struct LogStructure sbp_log_structures[] PROGMEM = { { LOG_MSG_SBPHEALTH, sizeof(log_SbpHealth), "SBPH", "IffffIBBBi", "TimeMS,PHz,VHz,BHz,UpHz,CrcError,dgpsOn,rtkOn,hasRtkBase,IAR" }, { LOG_MSG_SBPLLH, sizeof(log_SbpLLH), "SBPL", "IIiiiB", "TimeMS,tow,lat,lon,alt,num_sats" }, { LOG_MSG_SBPBASELINE, sizeof(log_SbpBaseline), "SBPB", "IIiiiiHBB", "TimeMS,tow,x,y,z,len,acc,num_sats,flags" }, { LOG_MSG_SBPTRACKING1, sizeof(log_SbpTracking1), "SBT1", "IBfBfBfBfBfBfBf", "TimeMS,s1,c1,s2,c2,s3,c3,s4,c4,s5,c5,s6,c6,s7,c7" }, { LOG_MSG_SBPTRACKING2, sizeof(log_SbpTracking2), "SBT2", "IBfBfBfBfBfBfBf", "TimeMS,s8,c8,s9,c9,s10,c10,s11,c11,s12,c12,s13,c13,s14,c14" } }; void AP_GPS_SBP::logging_write_headers(void) { if (!logging_started) { logging_started = true; gps._DataFlash->AddLogFormats(sbp_log_structures, sizeof(sbp_log_structures) / sizeof(LogStructure)); } } void AP_GPS_SBP::logging_log_health(float pos_msg_hz, float vel_msg_hz, float baseline_msg_hz, float full_update_hz) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); struct log_SbpHealth pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH), timestamp : hal.scheduler->millis(), pos_msg_hz : pos_msg_hz, vel_msg_hz : vel_msg_hz, baseline_msg_hz : baseline_msg_hz, full_update_hz : full_update_hz, crc_error_counter : crc_error_counter, dgps_corrections_incoming : dgps_corrections_incoming, rtk_corrections_incoming : rtk_corrections_incoming, has_rtk_base_pos : has_rtk_base_pos, iar_num_hypotheses : iar_num_hypotheses }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); }; void AP_GPS_SBP::logging_log_llh(struct sbp_pos_llh_t* p) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); struct log_SbpLLH pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPLLH), timestamp : hal.scheduler->millis(), tow : p->tow, lat : (int32_t) (p->lat*1e7), lon : (int32_t) (p->lon*1e7), alt : (int32_t) (p->height*1e2), n_sats : p->n_sats, }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); }; void AP_GPS_SBP::logging_log_baseline_ecef(struct sbp_baseline_ecef_t* b) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); float x = b->x / 1000.0; float y = b->y / 1000.0; float z = b->z / 1000.0; int32_t len = (int32_t) (safe_sqrt(x*x+y*y+z*z) * 1000.0); struct log_SbpBaseline pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPBASELINE), timestamp : hal.scheduler->millis(), tow : b->tow, x : b->x, y : b->y, z : b->z, length : len, accuracy : b->accuracy, n_sats : b->n_sats, flags : b->flags }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); }; void AP_GPS_SBP::logging_log_tracking_state(struct sbp_tracking_state_t* tstate, uint8_t num) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); struct log_SbpTracking1 pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPTRACKING1), timestamp : hal.scheduler->millis(), ch1_prn : tstate[0].prn, ch1_cn0 : tstate[0].cn0, ch2_prn : (uint8_t)(num < 1 ? 0 : tstate[1].prn), ch2_cn0 : num < 1 ? 0 : tstate[1].cn0, ch3_prn : (uint8_t)(num < 2 ? 0 : tstate[2].prn), ch3_cn0 : num < 2 ? 0 : tstate[2].cn0, ch4_prn : (uint8_t)(num < 3 ? 0 : tstate[3].prn), ch4_cn0 : num < 3 ? 0 : tstate[3].cn0, ch5_prn : (uint8_t)(num < 4 ? 0 : tstate[4].prn), ch5_cn0 : num < 4 ? 0 : tstate[4].cn0, ch6_prn : (uint8_t)(num < 5 ? 0 : tstate[5].prn), ch6_cn0 : num < 5 ? 0 : tstate[5].cn0, ch7_prn : (uint8_t)(num < 6 ? 0 : tstate[6].prn), ch7_cn0 : num < 6 ? 0 : tstate[6].cn0, }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); if (num > 6) { struct log_SbpTracking2 pkt2 = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPTRACKING2), timestamp : hal.scheduler->millis(), ch8_prn : (uint8_t)(num < 7 ? 0 : tstate[7].prn), ch8_cn0 : num < 7 ? 0 : tstate[7].cn0, ch9_prn : (uint8_t)(num < 8 ? 0 : tstate[8].prn), ch9_cn0 : num < 8 ? 0 : tstate[8].cn0, ch10_prn : (uint8_t)(num < 9 ? 0 : tstate[9].prn), ch10_cn0 : num < 9 ? 0 : tstate[9].cn0, ch11_prn : (uint8_t)(num < 10 ? 0 : tstate[10].prn), ch11_cn0 : num < 10 ? 0 : tstate[10].cn0, ch12_prn : (uint8_t)(num < 11 ? 0 : tstate[11].prn), ch12_cn0 : num < 11 ? 0 : tstate[11].cn0, ch13_prn : (uint8_t)(num < 12 ? 0 : tstate[12].prn), ch13_cn0 : num < 12 ? 0 : tstate[12].cn0, ch14_prn : (uint8_t)(num < 13 ? 0 : tstate[13].prn), ch14_cn0 : num < 13 ? 0 : tstate[13].cn0, }; gps._DataFlash->WriteBlock(&pkt2, sizeof(pkt)); }; }; #endif // SBP_HW_LOGGING #endif // GPS_RTK_AVAILABLE