/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include #include "GPIO.h" #include #include "hwdef/common/stm32_util.h" #include #ifndef HAL_BOOTLOADER_BUILD #include #endif #include #include #include using namespace ChibiOS; #if HAL_WITH_IO_MCU #include extern AP_IOMCU iomcu; #endif // GPIO pin table from hwdef.dat struct gpio_entry { uint8_t pin_num; bool enabled; uint8_t pwm_num; ioline_t pal_line; AP_HAL::GPIO::irq_handler_fn_t fn; // callback for GPIO interface thread_reference_t thd_wait; bool is_input; uint8_t mode; uint16_t isr_quota; uint8_t isr_disabled_ticks; AP_HAL::GPIO::INTERRUPT_TRIGGER_TYPE isr_mode; }; #ifdef HAL_GPIO_PINS #define HAVE_GPIO_PINS 1 static struct gpio_entry _gpio_tab[] = HAL_GPIO_PINS; #else #define HAVE_GPIO_PINS 0 #endif /* map a user pin number to a GPIO table entry */ static struct gpio_entry *gpio_by_pin_num(uint8_t pin_num, bool check_enabled=true) { #if HAVE_GPIO_PINS for (uint8_t i=0; ipwm_num != 0) { g->enabled = SRV_Channels::is_GPIO((g->pwm_num-1)+chan_offset); } } #endif // HAVE_GPIO_PINS #endif // HAL_BOOTLOADER_BUILD #ifdef HAL_PIN_ALT_CONFIG setup_alt_config(); #endif } #ifdef HAL_PIN_ALT_CONFIG // chosen alternative config uint8_t GPIO::alt_config; /* alternative config table, selected using BRD_ALT_CONFIG */ static const struct alt_config { uint8_t alternate; uint16_t mode; ioline_t line; PERIPH_TYPE periph_type; uint8_t periph_instance; } alternate_config[] HAL_PIN_ALT_CONFIG; /* change pin configuration based on ALT() lines in hwdef.dat */ void GPIO::setup_alt_config(void) { AP_BoardConfig *bc = AP::boardConfig(); if (!bc) { return; } alt_config = bc->get_alt_config(); if (alt_config == 0) { // use defaults return; } for (uint8_t i=0; ipal_line == alt.line) { g->enabled = true; break; } } #endif // HAVE_GPIO_PINS continue; } const iomode_t mode = alt.mode & ~PAL_STM32_HIGH; const uint8_t odr = (alt.mode & PAL_STM32_HIGH)?1:0; palSetLineMode(alt.line, mode); palWriteLine(alt.line, odr); } } } #endif // HAL_PIN_ALT_CONFIG /* resolve an ioline_t to take account of alternative configurations. This allows drivers to get the right ioline_t for an alternative config. Note that this may return 0, meaning the pin is not mapped to this peripheral in the active config */ ioline_t GPIO::resolve_alt_config(ioline_t base, PERIPH_TYPE ptype, uint8_t instance) { #ifdef HAL_PIN_ALT_CONFIG if (alt_config == 0) { // unchanged return base; } for (uint8_t i=0; iis_input && (g->mode == PAL_MODE_INPUT_PULLUP || g->mode == PAL_MODE_INPUT_PULLDOWN)) { // already set return; } g->mode = output?PAL_MODE_OUTPUT_PUSHPULL:PAL_MODE_INPUT; #if defined(STM32F7) || defined(STM32H7) || defined(STM32F4) || defined(STM32G4) || defined(STM32L4) || defined(STM32L4PLUS) if (g->mode == PAL_MODE_OUTPUT_PUSHPULL) { // retain OPENDRAIN if already set iomode_t old_mode = palReadLineMode(g->pal_line); if ((old_mode & PAL_MODE_OUTPUT_OPENDRAIN) == PAL_MODE_OUTPUT_OPENDRAIN) { g->mode = PAL_MODE_OUTPUT_OPENDRAIN; } } #endif palSetLineMode(g->pal_line, g->mode); g->is_input = !output; } } uint8_t GPIO::read(uint8_t pin) { struct gpio_entry *g = gpio_by_pin_num(pin); if (g) { return palReadLine(g->pal_line); } #if HAL_WITH_IO_MCU if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) { return iomcu.read_virtual_GPIO(pin); } #endif return 0; } void GPIO::write(uint8_t pin, uint8_t value) { struct gpio_entry *g = gpio_by_pin_num(pin); if (g) { if (g->is_input) { // control pullup/pulldown g->mode = value==1?PAL_MODE_INPUT_PULLUP:PAL_MODE_INPUT_PULLDOWN; palSetLineMode(g->pal_line, g->mode); } else if (value == PAL_LOW) { palClearLine(g->pal_line); } else { palSetLine(g->pal_line); } return; } #if HAL_WITH_IO_MCU if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) { iomcu.write_GPIO(pin, value); } #endif } void GPIO::toggle(uint8_t pin) { struct gpio_entry *g = gpio_by_pin_num(pin); if (g) { palToggleLine(g->pal_line); return; } #if HAL_WITH_IO_MCU if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) { iomcu.toggle_GPIO(pin); } #endif } /* Alternative interface: */ AP_HAL::DigitalSource* GPIO::channel(uint16_t pin) { struct gpio_entry *g = gpio_by_pin_num(pin); if (g != nullptr) { return NEW_NOTHROW DigitalSource(g->pal_line); } #if HAL_WITH_IO_MCU if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) { return NEW_NOTHROW IOMCU_DigitalSource(pin); } #endif return nullptr; } extern const AP_HAL::HAL& hal; /* Attach an interrupt handler to a GPIO pin number. The pin number must be one specified with a GPIO() marker in hwdef.dat */ bool GPIO::attach_interrupt(uint8_t pin, irq_handler_fn_t fn, INTERRUPT_TRIGGER_TYPE mode) { struct gpio_entry *g = gpio_by_pin_num(pin, false); if (!g) { return false; } g->isr_disabled_ticks = 0; g->isr_quota = 0; if (!_attach_interrupt(g->pal_line, palcallback_t(fn?pal_interrupt_cb_functor:nullptr), g, mode)) { return false; } g->fn = fn; g->isr_mode = mode; return true; } /* Attach an interrupt handler to ioline_t */ bool GPIO::_attach_interrupt(ioline_t line, AP_HAL::Proc p, uint8_t mode) { return _attach_interrupt(line, palcallback_t(p?pal_interrupt_cb:nullptr), (void*)p, mode); } bool GPIO::attach_interrupt(uint8_t pin, AP_HAL::Proc proc, INTERRUPT_TRIGGER_TYPE mode) { struct gpio_entry *g = gpio_by_pin_num(pin, false); if (!g) { return false; } g->isr_disabled_ticks = 0; g->isr_quota = 0; g->isr_mode = mode; return _attach_interrupt(g->pal_line, proc, mode); } bool GPIO::_attach_interruptI(ioline_t line, palcallback_t cb, void *p, uint8_t mode) { uint32_t chmode = 0; switch(mode) { case INTERRUPT_FALLING: chmode = PAL_EVENT_MODE_FALLING_EDGE; break; case INTERRUPT_RISING: chmode = PAL_EVENT_MODE_RISING_EDGE; break; case INTERRUPT_BOTH: chmode = PAL_EVENT_MODE_BOTH_EDGES; break; default: if (p) { return false; } break; } palevent_t *pep = pal_lld_get_line_event(line); if (pep->cb && p != nullptr) { // the pad is already being used for a callback return false; } if (!p) { chmode = PAL_EVENT_MODE_DISABLED; } palDisableLineEventI(line); palSetLineCallbackI(line, cb, p); palEnableLineEventI(line, chmode); return true; } bool GPIO::_attach_interrupt(ioline_t line, palcallback_t cb, void *p, uint8_t mode) { osalSysLock(); bool ret = _attach_interruptI(line, cb, p, mode); osalSysUnlock(); return ret; } bool GPIO::usb_connected(void) { return _usb_connected; } DigitalSource::DigitalSource(ioline_t _line) : line(_line) {} void DigitalSource::mode(uint8_t output) { palSetLineMode(line, output); } uint8_t DigitalSource::read() { return palReadLine(line); } void DigitalSource::write(uint8_t value) { palWriteLine(line, value); } void DigitalSource::toggle() { palToggleLine(line); } #if HAL_WITH_IO_MCU IOMCU_DigitalSource::IOMCU_DigitalSource(uint8_t _pin) : pin(_pin) {} void IOMCU_DigitalSource::write(uint8_t value) { iomcu.write_GPIO(pin, value); } void IOMCU_DigitalSource::toggle() { iomcu.toggle_GPIO(pin); } #endif // HAL_WITH_IO_MCU static void pal_interrupt_cb(void *arg) { if (arg != nullptr) { ((AP_HAL::Proc)arg)(); } } static void pal_interrupt_cb_functor(void *arg) { const uint32_t now = AP_HAL::micros(); struct gpio_entry *g = (gpio_entry *)arg; if (g == nullptr) { // what? return; } if (!(g->fn)) { return; } if (g->isr_quota >= 1) { /* we have an interrupt quota enabled for this pin. If the quota remaining drops to 1 without it being refreshed in timer_tick then we disable the interrupt source. This is to prevent CPU overload due to very high GPIO interrupt counts */ if (g->isr_quota == 1) { osalSysLockFromISR(); palDisableLineEventI(g->pal_line); osalSysUnlockFromISR(); return; } g->isr_quota--; } (g->fn)(g->pin_num, palReadLine(g->pal_line), now); } /* handle interrupt from pin change for wait_pin() */ static void pal_interrupt_wait(void *arg) { osalSysLockFromISR(); struct gpio_entry *g = (gpio_entry *)arg; if (g == nullptr || g->thd_wait == nullptr) { osalSysUnlockFromISR(); return; } osalThreadResumeI(&g->thd_wait, MSG_OK); osalSysUnlockFromISR(); } /* block waiting for a pin to change. Return true on pin change, false on timeout */ bool GPIO::wait_pin(uint8_t pin, INTERRUPT_TRIGGER_TYPE mode, uint32_t timeout_us) { struct gpio_entry *g = gpio_by_pin_num(pin); if (!g) { return false; } osalSysLock(); if (g->thd_wait) { // only allow single waiter osalSysUnlock(); return false; } if (!_attach_interruptI(g->pal_line, palcallback_t(pal_interrupt_wait), g, mode)) { osalSysUnlock(); return false; } // don't allow for very long timeouts, or below the delta timeout_us = constrain_uint32(TIME_US2I(timeout_us), CH_CFG_ST_TIMEDELTA, TIME_US2I(30000U)); msg_t msg = osalThreadSuspendTimeoutS(&g->thd_wait, timeout_us); _attach_interruptI(g->pal_line, palcallback_t(nullptr), nullptr, mode); osalSysUnlock(); return msg == MSG_OK; } // check if a pin number is valid bool GPIO::valid_pin(uint8_t pin) const { if (gpio_by_pin_num(pin) != nullptr) { return true; } #if HAL_WITH_IO_MCU if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) { return true; } #endif return false; } // return servo channel associated with GPIO pin. Returns true on success and fills in servo_ch argument // servo_ch uses zero-based indexing bool GPIO::pin_to_servo_channel(uint8_t pin, uint8_t& servo_ch) const { #if HAL_WITH_IO_MCU || HAVE_GPIO_PINS uint8_t fmu_chan_offset = 0; #endif #if HAL_WITH_IO_MCU if (AP_BoardConfig::io_enabled()) { // check if this is one of the main pins uint8_t main_servo_ch = pin; if (iomcu.convert_pin_number(main_servo_ch)) { servo_ch = main_servo_ch; return true; } // with IOMCU the local (FMU) channels start at 8 fmu_chan_offset = 8; } #endif #if HAVE_GPIO_PINS // search _gpio_tab for matching pin for (uint8_t i=0; ipal_line)); return true; } void GPIO::set_mode(uint8_t pin, uint32_t mode) { auto *p = gpio_by_pin_num(pin); if (p) { palSetLineMode(p->pal_line, ioline_t(mode)); } } #endif #ifndef IOMCU_FW /* timer to setup interrupt quotas for a 100ms period from monitor thread */ void GPIO::timer_tick() { // allow 100k interrupts/second max for GPIO interrupt sources, which is // 10k per 100ms call to timer_tick() #if HAVE_GPIO_PINS const uint16_t quota = 10000U; for (uint8_t i=0; iget_soft_armed()) { INTERNAL_ERROR(AP_InternalError::error_t::gpio_isr); } } if (hal.util->get_soft_armed()) { // Don't start counting until disarmed _gpio_tab[i].isr_disabled_ticks = 1; continue; } // Increment disabled ticks, don't wrap if (_gpio_tab[i].isr_disabled_ticks < UINT8_MAX) { _gpio_tab[i].isr_disabled_ticks++; } // 100 * 100ms = 10 seconds const uint8_t ISR_retry_ticks = 100U; if ((_gpio_tab[i].isr_disabled_ticks > ISR_retry_ticks) && (_gpio_tab[i].fn != nullptr)) { // Try re-enabling GCS_SEND_TEXT(MAV_SEVERITY_NOTICE, "Retrying pin %d after ISR flood", _gpio_tab[i].pin_num); if (attach_interrupt(_gpio_tab[i].pin_num, _gpio_tab[i].fn, _gpio_tab[i].isr_mode)) { // Success, reset quota _gpio_tab[i].isr_quota = quota; } else { // Failed, reset disabled count to try again later _gpio_tab[i].isr_disabled_ticks = 1; } } } #endif // HAVE_GPIO_PINS } // Check for ISR floods bool GPIO::arming_checks(size_t buflen, char *buffer) const { #if HAVE_GPIO_PINS for (uint8_t i=0; isnprintf(buffer, buflen, "Pin %u disabled (ISR flood)", _gpio_tab[i].pin_num); return false; } } #endif // HAVE_GPIO_PINS return true; } #endif // IOMCU_FW