// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsMatrix.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include "AP_MotorsMatrix.h" extern const AP_HAL::HAL& hal; // Init void AP_MotorsMatrix::Init() { // call parent Init function to set-up throttle curve AP_Motors::Init(); // setup the motors setup_motors(); // enable fast channels or instant pwm set_update_rate(_speed_hz); } // set update rate to motors - a value in hertz void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz ) { int8_t i; // record requested speed _speed_hz = speed_hz; // check each enabled motor uint32_t mask = 0; for( i=0; iset_freq( mask, _speed_hz ); } // set frame orientation (normally + or X) void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation ) { // return if nothing has changed if( new_orientation == _flags.frame_orientation ) { return; } // call parent AP_Motors::set_frame_orientation( new_orientation ); // setup the motors setup_motors(); // enable fast channels or instant pwm set_update_rate(_speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsMatrix::enable() { int8_t i; // enable output channels for( i=0; ienable_ch(_motor_to_channel_map[i]); } } } // output_min - sends minimum values out to the motors void AP_MotorsMatrix::output_min() { int8_t i; // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = false; // fill the motor_out[] array for HIL use and send minimum value to each motor for( i=0; iradio_min; hal.rcout->write(_motor_to_channel_map[i], motor_out[i]); } } } // output_armed - sends commands to the motors // includes new scaling stability patch void AP_MotorsMatrix::output_armed() { int8_t i; int16_t out_min_pwm = _rc_throttle->radio_min + _min_throttle; // minimum pwm value we can send to the motors int16_t out_max_pwm = _rc_throttle->radio_max; // maximum pwm value we can send to the motors int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. int16_t rpy_low = 0; // lowest motor value int16_t rpy_high = 0; // highest motor value int16_t yaw_allowed; // amount of yaw we can fit in int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided) // initialize limits flag limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // Throttle is 0 to 1000 only // To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object if (_rc_throttle->servo_out < 0) { _rc_throttle->servo_out = 0; limit.throttle_lower = true; } if (_rc_throttle->servo_out > _max_throttle) { _rc_throttle->servo_out = _max_throttle; limit.throttle_upper = true; } // capture desired roll, pitch, yaw and throttle from receiver _rc_roll->calc_pwm(); _rc_pitch->calc_pwm(); _rc_throttle->calc_pwm(); _rc_yaw->calc_pwm(); // if we are not sending a throttle output, we cut the motors if (_rc_throttle->servo_out == 0) { // range check spin_when_armed if (_spin_when_armed_ramped < 0) { _spin_when_armed_ramped = 0; } if (_spin_when_armed_ramped > _min_throttle) { _spin_when_armed_ramped = _min_throttle; } for (i=0; iradio_min + _spin_when_armed_ramped; } } // Every thing is limited limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; } else { // check if throttle is below limit if (_rc_throttle->radio_out <= out_min_pwm) { // perhaps being at min throttle itself is not a problem, only being under is limit.throttle_lower = true; } // calculate roll and pitch for each motor // set rpy_low and rpy_high to the lowest and highest values of the motors for (i=0; ipwm_out * _roll_factor[i] + _rc_pitch->pwm_out * _pitch_factor[i]; // record lowest roll pitch command if (rpy_out[i] < rpy_low) { rpy_low = rpy_out[i]; } // record highest roll pich command if (rpy_out[i] > rpy_high) { rpy_high = rpy_out[i]; } } } // calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of: // 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest) // 2. the higher of: // a) the pilot's throttle input // b) the mid point between the pilot's input throttle and hover-throttle // Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. // Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. // We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control) // We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it int16_t motor_mid = (rpy_low+rpy_high)/2; out_best_thr_pwm = min(out_mid_pwm - motor_mid, max(_rc_throttle->radio_out, (_rc_throttle->radio_out+_hover_out)/2)); // calculate amount of yaw we can fit into the throttle range // this is always equal to or less than the requested yaw from the pilot or rate controller yaw_allowed = min(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2; yaw_allowed = max(yaw_allowed, AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM); if (_rc_yaw->pwm_out >= 0) { // if yawing right if (yaw_allowed > _rc_yaw->pwm_out) { yaw_allowed = _rc_yaw->pwm_out; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output }else{ limit.yaw = true; } }else{ // if yawing left yaw_allowed = -yaw_allowed; if( yaw_allowed < _rc_yaw->pwm_out ) { yaw_allowed = _rc_yaw->pwm_out; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output }else{ limit.yaw = true; } } // add yaw to intermediate numbers for each motor rpy_low = 0; rpy_high = 0; for (i=0; i rpy_high) { rpy_high = rpy_out[i]; } } } // check everything fits thr_adj = _rc_throttle->radio_out - out_best_thr_pwm; // calc upper and lower limits of thr_adj int16_t thr_adj_max = out_max_pwm-(out_best_thr_pwm+rpy_high); // if we are increasing the throttle (situation #2 above).. if (thr_adj > 0) { // increase throttle as close as possible to requested throttle // without going over out_max_pwm if (thr_adj > thr_adj_max){ thr_adj = thr_adj_max; // we haven't even been able to apply full throttle command limit.throttle_upper = true; } }else if(thr_adj < 0){ // decrease throttle as close as possible to requested throttle // without going under out_min_pwm or over out_max_pwm // earlier code ensures we can't break both boundaries int16_t thr_adj_min = min(out_min_pwm-(out_best_thr_pwm+rpy_low),0); if (thr_adj > thr_adj_max) { thr_adj = thr_adj_max; limit.throttle_upper = true; } if (thr_adj < thr_adj_min) { thr_adj = thr_adj_min; limit.throttle_lower = true; } } // do we need to reduce roll, pitch, yaw command // earlier code does not allow both limit's to be passed simultainiously with abs(_yaw_factor)<1 if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){ rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low; // we haven't even been able to apply full roll, pitch and minimal yaw without scaling limit.roll_pitch = true; limit.yaw = true; }else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){ rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high; // we haven't even been able to apply full roll, pitch and minimal yaw without scaling limit.roll_pitch = true; limit.yaw = true; } // add scaled roll, pitch, constrained yaw and throttle for each motor for (i=0; iwrite(_motor_to_channel_map[i], motor_out[i]); } } } // output_disarmed - sends commands to the motors void AP_MotorsMatrix::output_disarmed() { // Send minimum values to all motors output_min(); } // output_test - spin each motor for a moment to allow the user to confirm the motor order and spin direction void AP_MotorsMatrix::output_test() { uint8_t min_order, max_order; uint8_t i,j; // find min and max orders min_order = _test_order[0]; max_order = _test_order[0]; for(i=1; i max_order ) max_order = _test_order[i]; } // shut down all motors output_min(); // first delay is longer hal.scheduler->delay(4000); // loop through all the possible orders spinning any motors that match that description for( i=min_order; i<=max_order; i++ ) { for( j=0; jwrite(_motor_to_channel_map[j], _rc_throttle->radio_min + _min_throttle); hal.scheduler->delay(300); hal.rcout->write(_motor_to_channel_map[j], _rc_throttle->radio_min); hal.scheduler->delay(2000); } } } // shut down all motors output_min(); } // add_motor void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order) { // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { // increment number of motors if this motor is being newly motor_enabled if( !motor_enabled[motor_num] ) { motor_enabled[motor_num] = true; _num_motors++; } // set roll, pitch, thottle factors and opposite motor (for stability patch) _roll_factor[motor_num] = roll_fac; _pitch_factor[motor_num] = pitch_fac; _yaw_factor[motor_num] = yaw_fac; // set order that motor appears in test _test_order[motor_num] = testing_order; // disable this channel from being used by RC_Channel_aux RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[motor_num]); } } // add_motor using just position and prop direction void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order) { // call raw motor set-up method add_motor_raw( motor_num, cosf(radians(angle_degrees + 90)), // roll factor cosf(radians(angle_degrees)), // pitch factor yaw_factor, // yaw factor testing_order); } // remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor void AP_MotorsMatrix::remove_motor(int8_t motor_num) { // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { // if the motor was enabled decrement the number of motors if( motor_enabled[motor_num] ) _num_motors--; // disable the motor, set all factors to zero motor_enabled[motor_num] = false; _roll_factor[motor_num] = 0; _pitch_factor[motor_num] = 0; _yaw_factor[motor_num] = 0; } } // remove_all_motors - removes all motor definitions void AP_MotorsMatrix::remove_all_motors() { for( int8_t i=0; i