/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * APM_BMP085.cpp - Arduino Library for BMP085 absolute pressure sensor * Code by Jordi Mu�oz and Jose Julio. DIYDrones.com * Sensor is conected to I2C port * Sensor End of Conversion (EOC) pin is PC7 (30) * * Variables: * RawTemp : Raw temperature data * RawPress : Raw pressure data * * Temp : Calculated temperature (in 0.1�C units) * Press : Calculated pressure (in Pa units) * * Methods: * Init() : Initialization of I2C and read sensor calibration data * Read() : Read sensor data and calculate Temperature and Pressure * This function is optimized so the main host don�t need to wait * You can call this function in your main loop * It returns a 1 if there are new data. * * Internal functions: * Command_ReadTemp(): Send commando to read temperature * Command_ReadPress(): Send commando to read Pressure * ReadTemp() : Read temp register * ReadPress() : Read press register * * */ // AVR LibC Includes #include #include #include // ArduPilot Mega Vector/Matrix math Library #include #include "AP_Baro_BMP085.h" extern const AP_HAL::HAL& hal; #define BMP085_ADDRESS 0x77 //(0xEE >> 1) #define BMP085_EOC 30 // End of conversion pin PC7 on APM1 // the apm2 hardware needs to check the state of the // chip using a direct IO port // On APM2 prerelease hw, the data ready port is hooked up to PE7, which // is not available to the arduino digitalRead function. #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 #define BMP_DATA_READY() hal.gpio->read(BMP085_EOC) #else // No EOC connection from Baro // Use times instead. // Temp conversion time is 4.5ms // Pressure conversion time is 25.5ms (for OVERSAMPLING=3) #define BMP_DATA_READY() (BMP085_State == 0 ? hal.scheduler->millis() > (_last_temp_read_command_time + 5) : hal.scheduler->millis() > (_last_press_read_command_time + 26)) #endif // oversampling 3 gives 26ms conversion time. We then average #define OVERSAMPLING 3 // Public Methods ////////////////////////////////////////////////////////////// bool AP_Baro_BMP085::init() { uint8_t buff[22]; // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); // take i2c bus sempahore if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) return false; hal.gpio->pinMode(BMP085_EOC, HAL_GPIO_INPUT);// End Of Conversion (PC7) input // We read the calibration data registers if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xAA, 22, buff) != 0) { healthy = false; i2c_sem->give(); return false; } ac1 = ((int16_t)buff[0] << 8) | buff[1]; ac2 = ((int16_t)buff[2] << 8) | buff[3]; ac3 = ((int16_t)buff[4] << 8) | buff[5]; ac4 = ((int16_t)buff[6] << 8) | buff[7]; ac5 = ((int16_t)buff[8] << 8) | buff[9]; ac6 = ((int16_t)buff[10] << 8) | buff[11]; b1 = ((int16_t)buff[12] << 8) | buff[13]; b2 = ((int16_t)buff[14] << 8) | buff[15]; mb = ((int16_t)buff[16] << 8) | buff[17]; mc = ((int16_t)buff[18] << 8) | buff[19]; md = ((int16_t)buff[20] << 8) | buff[21]; _last_press_read_command_time = 0; _last_temp_read_command_time = 0; //Send a command to read Temp Command_ReadTemp(); BMP085_State = 0; // init raw temo RawTemp = 0; healthy = true; i2c_sem->give(); return true; } // Read the sensor. This is a state machine // acumulate a new sensor reading void AP_Baro_BMP085::accumulate(void) { // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); if (!BMP_DATA_READY()) { return; } // take i2c bus sempahore if (!i2c_sem->take(1)) return; if (BMP085_State == 0) { ReadTemp(); } else { ReadPress(); Calculate(); } BMP085_State++; if (BMP085_State == 5) { BMP085_State = 0; Command_ReadTemp(); } else { Command_ReadPress(); } i2c_sem->give(); } // Read the sensor using accumulated data uint8_t AP_Baro_BMP085::read() { if (_count == 0 && BMP_DATA_READY()) { accumulate(); } if (_count == 0) { return 0; } _last_update = hal.scheduler->millis(); Temp = 0.1f * _temp_sum / _count; Press = _press_sum / _count; _pressure_samples = _count; _count = 0; _temp_sum = 0; _press_sum = 0; return 1; } float AP_Baro_BMP085::get_pressure() { return Press; } float AP_Baro_BMP085::get_temperature() { return Temp; } // Private functions: ///////////////////////////////////////////////////////// // Send command to Read Pressure void AP_Baro_BMP085::Command_ReadPress() { // Mode 0x34+(OVERSAMPLING << 6) is osrs=3 when OVERSAMPLING=3 => 25.5ms conversion time uint8_t res = hal.i2c->writeRegister(BMP085_ADDRESS, 0xF4, 0x34+(OVERSAMPLING << 6)); _last_press_read_command_time = hal.scheduler->millis(); if (res != 0) { healthy = false; } } // Read Raw Pressure values void AP_Baro_BMP085::ReadPress() { uint8_t buf[3]; if (!healthy && hal.scheduler->millis() < _retry_time) { return; } if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xF6, 3, buf) != 0) { _retry_time = hal.scheduler->millis() + 1000; hal.i2c->setHighSpeed(false); healthy = false; return; } RawPress = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2])) >> (8 - OVERSAMPLING); } // Send Command to Read Temperature void AP_Baro_BMP085::Command_ReadTemp() { if (hal.i2c->writeRegister(BMP085_ADDRESS, 0xF4, 0x2E) != 0) { healthy = false; } _last_temp_read_command_time = hal.scheduler->millis(); } // Read Raw Temperature values void AP_Baro_BMP085::ReadTemp() { uint8_t buf[2]; int32_t _temp_sensor; if (!healthy && hal.scheduler->millis() < _retry_time) { return; } if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xF6, 2, buf) != 0) { _retry_time = hal.scheduler->millis() + 1000; hal.i2c->setHighSpeed(false); healthy = false; return; } _temp_sensor = buf[0]; _temp_sensor = (_temp_sensor << 8) | buf[1]; RawTemp = _temp_filter.apply(_temp_sensor); } // Calculate Temperature and Pressure in real units. void AP_Baro_BMP085::Calculate() { int32_t x1, x2, x3, b3, b5, b6, p; uint32_t b4, b7; int32_t tmp; // See Datasheet page 13 for this formulas // Based also on Jee Labs BMP085 example code. Thanks for share. // Temperature calculations x1 = ((int32_t)RawTemp - ac6) * ac5 >> 15; x2 = ((int32_t) mc << 11) / (x1 + md); b5 = x1 + x2; _temp_sum += (b5 + 8) >> 4; // Pressure calculations b6 = b5 - 4000; x1 = (b2 * (b6 * b6 >> 12)) >> 11; x2 = ac2 * b6 >> 11; x3 = x1 + x2; //b3 = (((int32_t) ac1 * 4 + x3)<> 2; // BAD //b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0 tmp = ac1; tmp = (tmp*4 + x3)<> 13; x2 = (b1 * (b6 * b6 >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15; b7 = ((uint32_t) RawPress - b3) * (50000 >> OVERSAMPLING); p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2; x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; _press_sum += p + ((x1 + x2 + 3791) >> 4); _count++; if (_count == 254) { _temp_sum *= 0.5f; _press_sum *= 0.5f; _count /= 2; } }