/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_auto.pde - init and run calls for auto flight mode * * This file contains the implementation for Land, Waypoint navigation and Takeoff from Auto mode * Command execution code (i.e. command_logic.pde) should: * a) switch to Auto flight mode with set_mode() function. This will cause auto_init to be called * b) call one of the three auto initialisation functions: auto_wp_start(), auto_takeoff_start(), auto_land_start() * c) call one of the verify functions auto_wp_verify(), auto_takeoff_verify, auto_land_verify repeated to check if the command has completed * The main loop (i.e. fast loop) will call update_flight_modes() which will in turn call auto_run() which, based upon the auto_mode variable will call * correct auto_wp_run, auto_takeoff_run or auto_land_run to actually implement the feature */ /* * While in the auto flight mode, navigation or do/now commands can be run. * Code in this file implements the navigation commands */ // auto_init - initialise auto controller static bool auto_init(bool ignore_checks) { if ((GPS_ok() && inertial_nav.position_ok() && mission.num_commands() > 1) || ignore_checks) { // stop ROI from carrying over from previous runs of the mission // To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check if (auto_yaw_mode == AUTO_YAW_ROI) { set_auto_yaw_mode(AUTO_YAW_HOLD); } // start the mission mission.start(); return true; }else{ return false; } } // auto_run - runs the auto controller // should be called at 100hz or more // relies on run_autopilot being called at 10hz which handles decision making and non-navigation related commands static void auto_run() { // call the correct auto controller switch (auto_mode) { case Auto_TakeOff: auto_takeoff_run(); break; case Auto_WP: auto_wp_run(); break; case Auto_Land: auto_land_run(); break; case Auto_RTL: auto_rtl_run(); break; case Auto_Circle: auto_circle_run(); break; } } // auto_takeoff_start - initialises waypoint controller to implement take-off static void auto_takeoff_start(float final_alt) { auto_mode = Auto_TakeOff; // initialise wpnav destination Vector3f target_pos = inertial_nav.get_position(); target_pos.z = final_alt; wp_nav.set_wp_destination(target_pos); // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); // tell motors to do a slow start motors.slow_start(true); } // auto_takeoff_run - takeoff in auto mode // called by auto_run at 100hz or more static void auto_takeoff_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed) { // reset attitude control targets attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); // tell motors to do a slow start motors.slow_start(true); // To-Do: re-initialise wpnav targets return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); } // run waypoint controller wp_nav.update_wpnav(); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination static void auto_wp_start(const Vector3f& destination) { auto_mode = Auto_WP; // initialise wpnav wp_nav.set_wp_destination(destination); // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_run - runs the auto waypoint controller // called by auto_run at 100hz or more static void auto_wp_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed) { // To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); // tell motors to do a slow start motors.slow_start(true); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); if (target_yaw_rate != 0) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // run waypoint controller wp_nav.update_wpnav(); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.angle_ef_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(),true); } } // auto_land_start - initialises controller to implement a landing static void auto_land_start() { // set target to stopping point Vector3f stopping_point; wp_nav.get_loiter_stopping_point_xy(stopping_point); // call location specific land start function auto_land_start(stopping_point); } // auto_land_start - initialises controller to implement a landing static void auto_land_start(const Vector3f& destination) { auto_mode = Auto_Land; // initialise loiter target destination wp_nav.set_loiter_target(destination); // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // auto_land_run - lands in auto mode // called by auto_run at 100hz or more static void auto_land_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed) { attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); // set target to current position wp_nav.init_loiter_target(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); } // run loiter controller wp_nav.update_loiter(); // call z-axis position controller pos_control.set_alt_target_from_climb_rate(get_throttle_land(), G_Dt); pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); } // auto_rtl_start - initialises RTL in AUTO flight mode static void auto_rtl_start() { auto_mode = Auto_RTL; // call regular rtl flight mode initialisation and ask it to ignore checks rtl_init(true); } // auto_rtl_run - rtl in AUTO flight mode // called by auto_run at 100hz or more void auto_rtl_run() { // call regular rtl flight mode run function rtl_run(); } // auto_circle_start - initialises controller to fly a circle in AUTO flight mode static void auto_circle_start(const Vector3f& center) { auto_mode = Auto_Circle; // set circle center circle_nav.set_center(center); } // auto_circle_run - circle in AUTO flight mode // called by auto_run at 100hz or more void auto_circle_run() { // call circle controller circle_nav.update(); // call z-axis position controller pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_yaw(circle_nav.get_roll(), circle_nav.get_pitch(), circle_nav.get_yaw(),true); } // get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter // set rtl parameter to true if this is during an RTL uint8_t get_default_auto_yaw_mode(bool rtl) { switch (g.wp_yaw_behavior) { case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL: if (rtl) { return AUTO_YAW_HOLD; }else{ return AUTO_YAW_LOOK_AT_NEXT_WP; } break; case WP_YAW_BEHAVIOR_LOOK_AHEAD: return AUTO_YAW_LOOK_AHEAD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP: default: return AUTO_YAW_LOOK_AT_NEXT_WP; break; } } // set_auto_yaw_mode - sets the yaw mode for auto void set_auto_yaw_mode(uint8_t yaw_mode) { // return immediately if no change if (auto_yaw_mode == yaw_mode) { return; } auto_yaw_mode = yaw_mode; // perform initialisation switch (auto_yaw_mode) { case AUTO_YAW_LOOK_AT_NEXT_WP: // original_wp_bearing will be set by do_nav_wp or other nav command initialisation functions so no init required break; case AUTO_YAW_ROI: // point towards a location held in yaw_look_at_WP yaw_look_at_WP_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed yaw_look_at_heading = ahrs.yaw_sensor; break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. yaw_look_ahead_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_RESETTOARMEDYAW: // initial_armed_bearing will be set during arming so no init required break; } } // get_auto_heading - returns target heading depending upon auto_yaw_mode // 100hz update rate float get_auto_heading(void) { switch(auto_yaw_mode) { case AUTO_YAW_ROI: // point towards a location held in roi_WP return get_roi_yaw(); break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed return yaw_look_at_heading; break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. return get_look_ahead_yaw(); break; case AUTO_YAW_RESETTOARMEDYAW: // changes yaw to be same as when quad was armed return initial_armed_bearing; break; case AUTO_YAW_LOOK_AT_NEXT_WP: default: // point towards next waypoint. // we don't use wp_bearing because we don't want the copter to turn too much during flight return original_wp_bearing; break; } }