#include "Sub.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ static void failsafe_check_static() { sub.mainloop_failsafe_check(); } void Sub::init_ardupilot() { BoardConfig.init(); #if HAL_WITH_UAVCAN BoardConfig_CAN.init(); #endif #if AP_FEATURE_BOARD_DETECT // Detection won't work until after BoardConfig.init() switch (AP_BoardConfig::get_board_type()) { case AP_BoardConfig::PX4_BOARD_PIXHAWK2: AP_Param::set_by_name("GND_EXT_BUS", 0); celsius.init(0); break; default: AP_Param::set_by_name("GND_EXT_BUS", 1); celsius.init(1); break; } #else AP_Param::set_default_by_name("GND_EXT_BUS", 1); celsius.init(1); #endif // init cargo gripper #if GRIPPER_ENABLED == ENABLED g2.gripper.init(); #endif #if AC_FENCE == ENABLED fence.init(); #endif // initialise notify system notify.init(); // initialise battery monitor battery.init(); barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(); #if LOGGING_ENABLED == ENABLED log_init(); #endif // initialise rc channels including setting mode rc().init(); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up motors and output to escs init_joystick(); // joystick initialization relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); AP::compass().set_log_bit(MASK_LOG_COMPASS); AP::compass().init(); #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location::set_terrain(&terrain); wp_nav.set_terrain(&terrain); #endif pos_control.set_dt(MAIN_LOOP_SECONDS); // init the optical flow sensor #if OPTFLOW == ENABLED init_optflow(); #endif #if MOUNT == ENABLED // initialise camera mount camera_mount.init(); // This step ncessary so the servo is properly initialized camera_mount.set_angle_targets(0, 0, 0); // for some reason the call to set_angle_targets changes the mode to mavlink targeting! camera_mount.set_mode(MAV_MOUNT_MODE_RC_TARGETING); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif // Init baro and determine if we have external (depth) pressure sensor barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.calibrate(false); barometer.update(); for (uint8_t i = 0; i < barometer.num_instances(); i++) { if (barometer.get_type(i) == AP_Baro::BARO_TYPE_WATER) { barometer.set_primary_baro(i); depth_sensor_idx = i; ap.depth_sensor_present = true; sensor_health.depth = barometer.healthy(depth_sensor_idx); // initialize health flag break; // Go with the first one we find } } if (!ap.depth_sensor_present) { // We only have onboard baro // No external underwater depth sensor detected barometer.set_primary_baro(0); #if HAL_NAVEKF2_AVAILABLE ahrs.EKF2.set_baro_alt_noise(10.0f); // Readings won't correspond with rest of INS #endif #if HAL_NAVEKF3_AVAILABLE ahrs.EKF3.set_baro_alt_noise(10.0f); #endif } else { #if HAL_NAVEKF2_AVAILABLE ahrs.EKF2.set_baro_alt_noise(0.1f); #endif #if HAL_NAVEKF3_AVAILABLE ahrs.EKF3.set_baro_alt_noise(0.1f); #endif } leak_detector.init(); last_pilot_heading = ahrs.yaw_sensor; // initialise rangefinder #if RANGEFINDER_ENABLED == ENABLED init_rangefinder(); #endif // initialise AP_RPM library #if RPM_ENABLED == ENABLED rpm_sensor.init(); #endif // initialise mission library mission.init(); // initialise AP_Logger library #if LOGGING_ENABLED == ENABLED logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&sub, &Sub::Log_Write_Vehicle_Startup_Messages, void)); #endif startup_INS_ground(); #ifdef ENABLE_SCRIPTING g2.scripting.init(); #endif // ENABLE_SCRIPTING // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe mainloop_failsafe_enable(); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); // disable safety if requested BoardConfig.init_safety(); hal.console->print("\nInit complete"); // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Sub::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_SUBMARINE); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // calibrate gyros - returns true if successfully calibrated // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Sub::position_ok() { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_position_ok() || optflow_position_ok()); } // ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set bool Sub::ekf_position_ok() { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors.armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } // optflow_position_ok - returns true if optical flow based position estimate is ok bool Sub::optflow_position_ok() { // return immediately if EKF not used if (!ahrs.have_inertial_nav()) { return false; } // return immediately if neither optflow nor visual odometry is enabled bool enabled = false; #if OPTFLOW == ENABLED if (optflow.enabled()) { enabled = true; } #endif #if HAL_VISUALODOM_ENABLED if (visual_odom.enabled()) { enabled = true; } #endif if (!enabled) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors.armed()) { return (filt_status.flags.pred_horiz_pos_rel); } return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } /* should we log a message type now? */ bool Sub::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED ap.logging_started = logger.logging_started(); return logger.should_log(mask); #else return false; #endif } #include #include #include // dummy method to avoid linking AFS bool AP_AdvancedFailsafe::gcs_terminate(bool should_terminate, const char *reason) { return false; } AP_AdvancedFailsafe *AP::advancedfailsafe() { return nullptr; } // dummy method to avoid linking AP_Avoidance AP_Avoidance *AP::ap_avoidance() { return nullptr; }