/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* parent class for aircraft simulators */ #pragma once #if AP_SIM_ENABLED #include #include "SITL.h" #include "SITL_Input.h" #include "SIM_Sprayer.h" #include "SIM_Gripper_Servo.h" #include "SIM_Gripper_EPM.h" #include "SIM_Parachute.h" #include "SIM_Precland.h" #include "SIM_RichenPower.h" #include "SIM_FETtecOneWireESC.h" #include "SIM_I2C.h" #include "SIM_Buzzer.h" #include "SIM_Battery.h" #include #include "SIM_JSON_Master.h" #ifndef USE_PICOJSON #define USE_PICOJSON (CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX) #endif namespace SITL { /* parent class for all simulator types */ class Aircraft { public: Aircraft(const char *frame_str); // called directly after constructor: virtual void set_start_location(const Location &start_loc, const float start_yaw); /* set simulation speedup */ void set_speedup(float speedup); float get_speedup() const { return target_speedup; } /* set instance number */ void set_instance(uint8_t _instance) { instance = _instance; } /* set directory for additional files such as aircraft models */ void set_autotest_dir(const char *_autotest_dir) { autotest_dir = _autotest_dir; } /* Create and set in/out socket for extenal simulator */ virtual void set_interface_ports(const char* address, const int port_in, const int port_out) {}; /* step the FDM by one time step */ virtual void update(const struct sitl_input &input) = 0; void update_model(const struct sitl_input &input); void update_home(); /* fill a sitl_fdm structure from the simulator state */ void fill_fdm(struct sitl_fdm &fdm); /* smooth sensors to provide kinematic consistancy */ void smooth_sensors(void); /* return normal distribution random numbers */ static double rand_normal(double mean, double stddev); // get frame rate of model in Hz float get_rate_hz(void) const { return rate_hz; } const Vector3f &get_gyro(void) const { return gyro; } const Vector3f &get_velocity_ef(void) const { return velocity_ef; } const Vector3f &get_velocity_air_ef(void) const { return velocity_air_ef; } const Matrix3f &get_dcm(void) const { return dcm; } const Vector3f &get_mag_field_bf(void) const { return mag_bf; } float gross_mass() const { return mass + external_payload_mass; } virtual void set_config(const char* config) { config_ = config; } // return simulation origin: const Location &get_origin() const { return origin; } const Location &get_location() const { return location; } // get position relative to home Vector3d get_position_relhome() const; // distance the rangefinder is perceiving float rangefinder_range() const; void get_attitude(Quaternion &attitude) const { attitude.from_rotation_matrix(dcm); } const Location &get_home() const { return home; } float get_home_yaw() const { return home_yaw; } void set_buzzer(Buzzer *_buzzer) { buzzer = _buzzer; } void set_sprayer(Sprayer *_sprayer) { sprayer = _sprayer; } void set_parachute(Parachute *_parachute) { parachute = _parachute; } void set_richenpower(RichenPower *_richenpower) { richenpower = _richenpower; } void set_adsb(class ADSB *_adsb) { adsb = _adsb; } void set_fetteconewireesc(FETtecOneWireESC *_fetteconewireesc) { fetteconewireesc = _fetteconewireesc; } void set_ie24(IntelligentEnergy24 *_ie24) { ie24 = _ie24; } void set_gripper_servo(Gripper_Servo *_gripper) { gripper = _gripper; } void set_gripper_epm(Gripper_EPM *_gripper_epm) { gripper_epm = _gripper_epm; } void set_precland(SIM_Precland *_precland); void set_i2c(class I2C *_i2c) { i2c = _i2c; } #if AP_TEST_DRONECAN_DRIVERS void set_dronecan_device(DroneCANDevice *_dronecan) { dronecan = _dronecan; } #endif float get_battery_voltage() const { return battery_voltage; } float get_battery_temperature() const { return battery.get_temperature(); } ADSB *adsb; protected: SIM *sitl; // origin of position vector Location origin; // home location Location home; bool home_is_set; Location location; float ground_level; float home_yaw; float frame_height; Matrix3f dcm; // rotation matrix, APM conventions, from body to earth Vector3f gyro; // rad/s Vector3f velocity_ef; // m/s, earth frame Vector3f wind_ef; // m/s, earth frame Vector3f velocity_air_ef; // velocity relative to airmass, earth frame Vector3f velocity_air_bf; // velocity relative to airmass, body frame Vector3d position; // meters, NED from origin float mass; // kg float external_payload_mass; // kg Vector3f accel_body{0.0f, 0.0f, -GRAVITY_MSS}; // m/s/s NED, body frame float airspeed; // m/s, apparent airspeed float airspeed_pitot; // m/s, apparent airspeed, as seen by fwd pitot tube float battery_voltage = 0.0f; float battery_current; float local_ground_level; // ground level at local position bool lock_step_scheduled; uint32_t last_one_hz_ms; // battery model Battery battery; uint32_t motor_mask; float rpm[32]; uint8_t rcin_chan_count; float rcin[12]; virtual float rangefinder_beam_width() const { return 0; } virtual float perpendicular_distance_to_rangefinder_surface() const; struct { // data from simulated laser scanner, if available struct vector3f_array points; struct float_array ranges; } scanner; // Rangefinder float rangefinder_m[SITL_NUM_RANGEFINDERS]; // Windvane apparent wind struct { float speed; float direction; } wind_vane_apparent; // Wind Turbulence simulated Data float turbulence_azimuth; float turbulence_horizontal_speed; // m/s float turbulence_vertical_speed; // m/s Vector3f mag_bf; // local earth magnetic field vector in Gauss, earth frame uint64_t time_now_us; const float gyro_noise = radians(0.1f); const float accel_noise = 0.3f; float rate_hz = 1200.0f; float target_speedup; uint64_t frame_time_us; uint64_t last_wall_time_us; uint32_t last_fps_report_ms; float achieved_rate_hz; // achieved speedup rate int64_t sleep_debt_us; uint32_t last_frame_count; uint8_t instance; const char *autotest_dir; const char *frame; bool use_time_sync = true; float last_speedup = -1.0f; const char *config_ = ""; // allow for AHRS_ORIENTATION AP_Int8 *ahrs_orientation; enum Rotation last_imu_rotation; AP_Float* custom_roll; AP_Float* custom_pitch; AP_Float* custom_yaw; enum GroundBehaviour { GROUND_BEHAVIOR_NONE = 0, GROUND_BEHAVIOR_NO_MOVEMENT, GROUND_BEHAVIOR_FWD_ONLY, GROUND_BEHAVIOR_TAILSITTER, } ground_behavior; bool use_smoothing; float ground_height_difference() const; virtual bool on_ground() const; // returns height above ground level in metres float hagl() const; // metres /* update location from position */ void update_position(void); /* update body frame magnetic field */ void update_mag_field_bf(void); /* advance time by deltat in seconds */ void time_advance(); /* setup the frame step time */ void setup_frame_time(float rate, float speedup); /* adjust frame_time calculation */ void adjust_frame_time(float rate); /* try to synchronise simulation time with wall clock time, taking into account desired speedup */ void sync_frame_time(void); /* add noise based on throttle level (from 0..1) */ void add_noise(float throttle); /* return a monotonic wall clock time in microseconds */ uint64_t get_wall_time_us(void) const; // update attitude and relative position void update_dynamics(const Vector3f &rot_accel); // update wind vector void update_wind(const struct sitl_input &input); // return filtered servo input as -1 to 1 range float filtered_idx(float v, uint8_t idx); float filtered_servo_angle(const struct sitl_input &input, uint8_t idx); float filtered_servo_range(const struct sitl_input &input, uint8_t idx); // extrapolate sensors by a given delta time in seconds void extrapolate_sensors(float delta_time); // update external payload/sensor dynamic void update_external_payload(const struct sitl_input &input); void add_shove_forces(Vector3f &rot_accel, Vector3f &body_accel); void add_twist_forces(Vector3f &rot_accel); // get local thermal updraft float get_local_updraft(const Vector3d ¤tPos); private: uint64_t last_time_us; uint32_t frame_counter; uint32_t last_ground_contact_ms; #if defined(__CYGWIN__) || defined(__CYGWIN64__) const uint32_t min_sleep_time{20000}; #else const uint32_t min_sleep_time{5000}; #endif struct { Vector3f accel_body; Vector3f gyro; Matrix3f rotation_b2e; Vector3d position; Vector3f velocity_ef; uint64_t last_update_us; Location location; } smoothing; LowPassFilterFloat servo_filter[5]; Buzzer *buzzer; Sprayer *sprayer; Gripper_Servo *gripper; Gripper_EPM *gripper_epm; Parachute *parachute; RichenPower *richenpower; FETtecOneWireESC *fetteconewireesc; IntelligentEnergy24 *ie24; SIM_Precland *precland; class I2C *i2c; #if AP_TEST_DRONECAN_DRIVERS DroneCANDevice *dronecan; #endif }; } // namespace SITL #endif // AP_SIM_ENABLED