// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Septentrio GPS driver for ArduPilot. // Code by Michael Oborne // #include "AP_GPS.h" #include "AP_GPS_SBF.h" #include #if GPS_RTK_AVAILABLE extern const AP_HAL::HAL& hal; #define SBF_DEBUGGING 0 #if SBF_DEBUGGING # define Debug(fmt, args ...) \ do { \ hal.console->printf("%s:%d: " fmt "\n", \ __FUNCTION__, __LINE__, \ ## args); \ hal.scheduler->delay(1); \ } while(0) #else # define Debug(fmt, args ...) #endif AP_GPS_SBF::AP_GPS_SBF(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; port->write((const uint8_t*)_initialisation_blob[0], strlen(_initialisation_blob[0])); } // Process all bytes available from the stream // bool AP_GPS_SBF::read(void) { uint32_t now = hal.scheduler->millis(); if (_init_blob_index < (sizeof(_initialisation_blob) / sizeof(_initialisation_blob[0]))) { if (now > _init_blob_time) { port->write((const uint8_t*)_initialisation_blob[_init_blob_index], strlen(_initialisation_blob[_init_blob_index])); _init_blob_time = now + 70; _init_blob_index++; } } bool ret = false; while (port->available() > 0) { uint8_t temp = port->read(); ret |= parse(temp); } return ret; } bool AP_GPS_SBF::parse(uint8_t temp) { switch (sbf_msg.sbf_state) { default: case sbf_msg_parser_t::PREAMBLE1: if (temp == SBF_PREAMBLE1) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE2; sbf_msg.read = 0; } break; case sbf_msg_parser_t::PREAMBLE2: if (temp == SBF_PREAMBLE2) { sbf_msg.sbf_state = sbf_msg_parser_t::CRC1; } else { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; } break; case sbf_msg_parser_t::CRC1: sbf_msg.crc = temp; sbf_msg.sbf_state = sbf_msg_parser_t::CRC2; break; case sbf_msg_parser_t::CRC2: sbf_msg.crc += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID1; break; case sbf_msg_parser_t::BLOCKID1: sbf_msg.blockid = temp; sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID2; break; case sbf_msg_parser_t::BLOCKID2: sbf_msg.blockid += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH1; break; case sbf_msg_parser_t::LENGTH1: sbf_msg.length = temp; sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH2; break; case sbf_msg_parser_t::LENGTH2: sbf_msg.length += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::DATA; if (sbf_msg.length % 4 != 0) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; Debug("bad packet length=%u\n", (unsigned)sbf_msg.length); } break; case sbf_msg_parser_t::DATA: if (sbf_msg.read >= sizeof(sbf_msg.data)) { Debug("parse overflow length=%u\n", (unsigned)sbf_msg.read); sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } sbf_msg.data.bytes[sbf_msg.read] = temp; sbf_msg.read++; if (sbf_msg.read >= (sbf_msg.length - 8)) { uint16_t crc = crc16_ccitt((uint8_t*)&sbf_msg.blockid, 2, 0); crc = crc16_ccitt((uint8_t*)&sbf_msg.length, 2, crc); crc = crc16_ccitt((uint8_t*)&sbf_msg.data, sbf_msg.length - 8, crc); sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; if (sbf_msg.crc == crc) { return process_message(); } else { Debug("crc fail\n"); crc_error_counter++; } } break; } return false; } void AP_GPS_SBF::log_ExtEventPVTGeodetic(const msg4007 &temp) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } uint64_t now = hal.scheduler->micros64(); struct log_GPS_SBF_EVENT header = { LOG_PACKET_HEADER_INIT(LOG_GPS_SBF_EVENT_MSG), time_us:now, TOW:temp.TOW, WNc:temp.WNc, Mode:temp.Mode, Error:temp.Error, Latitude:ToDeg(temp.Latitude), Longitude:ToDeg(temp.Longitude), Height:temp.Height, Undulation:temp.Undulation, Vn:temp.Vn, Ve:temp.Ve, Vu:temp.Vu, COG:temp.COG }; gps._DataFlash->WriteBlock(&header, sizeof(header)); } bool AP_GPS_SBF::process_message(void) { uint16_t blockid = (sbf_msg.blockid & 4095u); Debug("BlockID %d", blockid); // ExtEventPVTGeodetic if (blockid == 4038) { log_ExtEventPVTGeodetic(sbf_msg.data.msg4007u); } // PVTGeodetic if (blockid == 4007) { const msg4007 &temp = sbf_msg.data.msg4007u; // Update time state if (temp.WNc != 65535) { state.time_week = temp.WNc; state.time_week_ms = (uint32_t)(temp.TOW); } state.last_gps_time_ms = hal.scheduler->millis(); state.hdop = last_hdop; // Update velocity state (dont use −2·10^10) if (temp.Vn > -200000) { state.velocity.x = (float)(temp.Vn); state.velocity.y = (float)(temp.Ve); state.velocity.z = (float)(-temp.Vu); state.have_vertical_velocity = true; float ground_vector_sq = state.velocity[0] * state.velocity[0] + state.velocity[1] * state.velocity[1]; state.ground_speed = (float)safe_sqrt(ground_vector_sq); state.ground_course_cd = (int32_t)(100 * ToDeg(atan2f(state.velocity[1], state.velocity[0]))); state.ground_course_cd = wrap_360_cd(state.ground_course_cd); } // Update position state (dont use −2·10^10) if (temp.Latitude > -200000) { state.location.lat = (int32_t)(temp.Latitude * RAD_TO_DEG_DOUBLE * 1e7); state.location.lng = (int32_t)(temp.Longitude * RAD_TO_DEG_DOUBLE * 1e7); state.location.alt = (int32_t)((float)temp.Height * 1e2f); } if (temp.NrSV != 255) { state.num_sats = temp.NrSV; } Debug("temp.Mode=0x%02x\n", (unsigned)temp.Mode); switch (temp.Mode & 15) { case 0: // no pvt state.status = AP_GPS::NO_FIX; break; case 1: // standalone state.status = AP_GPS::GPS_OK_FIX_3D; break; case 2: // dgps state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 3: // fixed location state.status = AP_GPS::GPS_OK_FIX_3D; break; case 4: // rtk fixed state.status = AP_GPS::GPS_OK_FIX_3D_RTK; break; case 5: // rtk float state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 6: // sbas state.status = AP_GPS::GPS_OK_FIX_3D; break; case 7: // moving rtk fixed state.status = AP_GPS::GPS_OK_FIX_3D_RTK; break; case 8: // moving rtk float state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; } if ((temp.Mode & 64) > 0) // gps is in base mode state.status = AP_GPS::NO_FIX; if ((temp.Mode & 128) > 0) // gps only has 2d fix state.status = AP_GPS::GPS_OK_FIX_2D; return true; } // DOP if (blockid == 4001) { const msg4001 &temp = sbf_msg.data.msg4001u; last_hdop = temp.HDOP; state.hdop = last_hdop; } return false; } void AP_GPS_SBF::inject_data(uint8_t *data, uint8_t len) { if (port->txspace() > len) { last_injected_data_ms = hal.scheduler->millis(); port->write(data, len); } else { Debug("SBF: Not enough TXSPACE"); } } #endif // GPS_RTK_AVAILABLE