/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "AP_Compass_AK8963.h" #include #define READ_FLAG 0x80 #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_I2C_SLV0_REG 0x26 #define MPUREG_I2C_SLV0_CTRL 0x27 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 /* bit definitions for MPUREG_USER_CTRL */ #define MPUREG_USER_CTRL 0x6A /* Enable MPU to act as the I2C Master to external slave sensors */ # define BIT_USER_CTRL_I2C_MST_EN 0x20 # define BIT_USER_CTRL_I2C_IF_DIS 0x10 /* bit definitions for MPUREG_MST_CTRL */ #define MPUREG_I2C_MST_CTRL 0x24 # define I2C_SLV0_EN 0x80 # define I2C_MST_CLOCK_400KHZ 0x0D # define I2C_MST_CLOCK_258KHZ 0x08 #define MPUREG_I2C_SLV4_CTRL 0x34 #define MPUREG_I2C_MST_DELAY_CTRL 0x67 # define I2C_SLV0_DLY_EN 0x01 #define AK8963_I2C_ADDR 0x0c #define AK8963_WIA 0x00 # define AK8963_Device_ID 0x48 #define AK8963_HXL 0x03 /* bit definitions for AK8963 CNTL1 */ #define AK8963_CNTL1 0x0A # define AK8963_CONTINUOUS_MODE1 0x02 # define AK8963_CONTINUOUS_MODE2 0x06 # define AK8963_SELFTEST_MODE 0x08 # define AK8963_POWERDOWN_MODE 0x00 # define AK8963_FUSE_MODE 0x0f # define AK8963_16BIT_ADC 0x10 # define AK8963_14BIT_ADC 0x00 #define AK8963_CNTL2 0x0B # define AK8963_RESET 0x01 #define AK8963_ASAX 0x10 #define AK8963_DEBUG 0 #if AK8963_DEBUG #include #define error(...) do { fprintf(stderr, __VA_ARGS__); } while (0) #define ASSERT(x) assert(x) #else #define error(...) do { } while (0) #ifndef ASSERT #define ASSERT(x) #endif #endif extern const AP_HAL::HAL& hal; AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass, AP_AK8963_SerialBus *bus) : AP_Compass_Backend(compass), _initialized(false), _last_update_timestamp(0), _last_accum_time(0), _bus(bus) { _reset_filter(); } AP_Compass_Backend *AP_Compass_AK8963::detect_mpu9250(Compass &compass) { AP_AK8963_SerialBus *bus = new AP_AK8963_SerialBus_MPU9250(); if (!bus) return nullptr; return _detect(compass, bus); } AP_Compass_Backend *AP_Compass_AK8963::detect_i2c(Compass &compass, AP_HAL::I2CDriver *i2c, uint8_t addr) { AP_AK8963_SerialBus *bus = new AP_AK8963_SerialBus_I2C(i2c, addr); if (!bus) return nullptr; return _detect(compass, bus); } AP_Compass_Backend *AP_Compass_AK8963::_detect(Compass &compass, AP_AK8963_SerialBus *bus) { AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, bus); if (sensor == nullptr) { delete bus; return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_AK8963::~AP_Compass_AK8963() { delete _bus; } /* stub to satisfy Compass API*/ void AP_Compass_AK8963::accumulate(void) { } bool AP_Compass_AK8963::init() { _bus_sem = _bus->get_semaphore(); hal.scheduler->suspend_timer_procs(); if (!_bus_sem->take(100)) { hal.console->printf("AK8963: Unable to get bus semaphore"); goto fail_sem; } if (!_bus->configure()) { hal.console->printf("AK8963: Could not configure bus for AK8963\n"); goto fail; } if (!_check_id()) { hal.console->printf("AK8963: Wrong id\n"); goto fail; } if (!_calibrate()) { hal.console->printf("AK8963: Could not read calibration data\n"); goto fail; } if (!_setup_mode()) { hal.console->printf("AK8963: Could not setup mode\n"); goto fail; } if (!_bus->start_measurements()) { hal.console->printf("AK8963: Could not start measurments\n"); goto fail; } _initialized = true; /* register the compass instance in the frontend */ _compass_instance = register_compass(); set_dev_id(_compass_instance, _bus->get_dev_id()); hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update, void)); _bus_sem->give(); hal.scheduler->resume_timer_procs(); return true; fail: _bus_sem->give(); fail_sem: hal.scheduler->resume_timer_procs(); return false; } void AP_Compass_AK8963::read() { if (!_initialized) { return; } if (_accum_count == 0) { /* We're not ready to publish*/ return; } hal.scheduler->suspend_timer_procs(); auto field = _get_filtered_field(); _reset_filter(); hal.scheduler->resume_timer_procs(); _make_factory_sensitivity_adjustment(field); _make_adc_sensitivity_adjustment(field); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP field.rotate(ROTATION_YAW_90); #endif publish_filtered_field(field, _compass_instance); } float AP_Compass_AK8963::get_conversion_ratio(void) { /* Convert from microTesla to milliGauss */ return 10.0f; } Vector3f AP_Compass_AK8963::_get_filtered_field() const { Vector3f field(_mag_x_accum, _mag_y_accum, _mag_z_accum); field /= _accum_count; return field; } void AP_Compass_AK8963::_reset_filter() { _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _accum_count = 0; } void AP_Compass_AK8963::_make_adc_sensitivity_adjustment(Vector3f& field) const { static const float ADC_16BIT_RESOLUTION = 0.15f; field *= ADC_16BIT_RESOLUTION; } void AP_Compass_AK8963::_make_factory_sensitivity_adjustment(Vector3f& field) const { field.x *= _magnetometer_ASA[0]; field.y *= _magnetometer_ASA[1]; field.z *= _magnetometer_ASA[2]; } void AP_Compass_AK8963::_update() { struct AP_AK8963_SerialBus::raw_value rv; float mag_x, mag_y, mag_z; // get raw_field - sensor frame, uncorrected Vector3f raw_field; uint32_t time_us = hal.scheduler->micros(); if (hal.scheduler->micros() - _last_update_timestamp < 10000) { goto end; } if (!_sem_take_nonblocking()) { goto end; } _bus->read_raw(&rv); /* Check for overflow. See AK8963's datasheet, section * 6.4.3.6 - Magnetic Sensor Overflow. */ if ((rv.st2 & 0x08)) { goto fail; } mag_x = (float) rv.val[0]; mag_y = (float) rv.val[1]; mag_z = (float) rv.val[2]; if (is_zero(mag_x) && is_zero(mag_y) && is_zero(mag_z)) { goto fail; } raw_field = Vector3f(mag_x, mag_y, mag_z); // rotate raw_field from sensor frame to body frame rotate_field(raw_field, _compass_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, time_us, _compass_instance); // correct raw_field for known errors correct_field(raw_field, _compass_instance); // publish raw_field (corrected point sample) for EKF use publish_unfiltered_field(raw_field, time_us, _compass_instance); _mag_x_accum += raw_field.x; _mag_y_accum += raw_field.y; _mag_z_accum += raw_field.z; _accum_count++; if (_accum_count == 10) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 5; } _last_update_timestamp = hal.scheduler->micros(); fail: _sem_give(); end: return; } bool AP_Compass_AK8963::_check_id() { for (int i = 0; i < 5; i++) { uint8_t deviceid = 0; _bus->register_read(AK8963_WIA, &deviceid, 0x01); /* Read AK8963's id */ if (deviceid == AK8963_Device_ID) { return true; } } return false; } bool AP_Compass_AK8963::_setup_mode() { _bus->register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | AK8963_16BIT_ADC); return true; } bool AP_Compass_AK8963::_reset() { _bus->register_write(AK8963_CNTL2, AK8963_RESET); return true; } bool AP_Compass_AK8963::_calibrate() { /* Enable FUSE-mode in order to be able to read calibration data */ _bus->register_write(AK8963_CNTL1, AK8963_FUSE_MODE | AK8963_16BIT_ADC); uint8_t response[3]; _bus->register_read(AK8963_ASAX, response, 3); for (int i = 0; i < 3; i++) { float data = response[i]; _magnetometer_ASA[i] = ((data - 128) / 256 + 1); error("%d: %lf\n", i, _magnetometer_ASA[i]); } return true; } bool AP_Compass_AK8963::_sem_take_blocking() { return _bus_sem->take(10); } bool AP_Compass_AK8963::_sem_give() { return _bus_sem->give(); } bool AP_Compass_AK8963::_sem_take_nonblocking() { static int _sem_failure_count = 0; if (_bus_sem->take_nonblocking()) { _sem_failure_count = 0; return true; } if (!hal.scheduler->system_initializing() ) { _sem_failure_count++; if (_sem_failure_count > 100) { hal.scheduler->panic("PANIC: failed to take _bus->sem " "100 times in a row, in " "AP_Compass_AK8963"); } } return false; } void AP_Compass_AK8963::_dump_registers() { #if AK8963_DEBUG error("MPU9250 registers\n"); static uint8_t regs[0x7e]; _bus_read(0x0, regs, 0x7e); for (uint8_t reg=0x00; reg<=0x7E; reg++) { uint8_t v = regs[reg]; error(("%d:%02x "), (unsigned)reg, (unsigned)v); if (reg % 16 == 0) { error("\n"); } } error("\n"); #endif } /* MPU9250 implementation of the AK8963 */ AP_AK8963_SerialBus_MPU9250::AP_AK8963_SerialBus_MPU9250() { _spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250); if (_spi == NULL) { hal.console->printf("Cannot get SPIDevice_MPU9250\n"); return; } } void AP_AK8963_SerialBus_MPU9250::register_write(uint8_t address, uint8_t value) { const uint8_t count = 1; _write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); _write(MPUREG_I2C_SLV0_REG, address); _write(MPUREG_I2C_SLV0_DO, value); _write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); } void AP_AK8963_SerialBus_MPU9250::register_read(uint8_t address, uint8_t *value, uint8_t count) { _write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); _write(MPUREG_I2C_SLV0_REG, address); _write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); hal.scheduler->delay(10); _read(MPUREG_EXT_SENS_DATA_00, value, count); } void AP_AK8963_SerialBus_MPU9250::_read(uint8_t address, uint8_t *buf, uint32_t count) { ASSERT(count < 32); address |= READ_FLAG; uint8_t tx[32] = { address, }; uint8_t rx[32] = { }; _spi->transaction(tx, rx, count + 1); memcpy(buf, rx + 1, count); } void AP_AK8963_SerialBus_MPU9250::_write(uint8_t address, const uint8_t *buf, uint32_t count) { ASSERT(count < 2); uint8_t tx[2] = { address, }; memcpy(tx+1, buf, count); _spi->transaction(tx, NULL, count + 1); } bool AP_AK8963_SerialBus_MPU9250::configure() { if (!AP_InertialSensor_MPU9250::initialize_driver_state()) return false; uint8_t user_ctrl; register_read(MPUREG_USER_CTRL, &user_ctrl, 1); _write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN); _write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ); return true; } void AP_AK8963_SerialBus_MPU9250::read_raw(struct raw_value *rv) { _read(MPUREG_EXT_SENS_DATA_00, (uint8_t *) rv, sizeof(*rv)); } AP_HAL::Semaphore * AP_AK8963_SerialBus_MPU9250::get_semaphore() { return _spi->get_semaphore(); } bool AP_AK8963_SerialBus_MPU9250::start_measurements() { const uint8_t count = sizeof(struct raw_value); /* Don't sample AK8963 at MPU9250's sample rate. See MPU9250's datasheet * about registers below and registers 73-96, External Sensor Data */ _write(MPUREG_I2C_SLV4_CTRL, 31); _write(MPUREG_I2C_MST_DELAY_CTRL, I2C_SLV0_DLY_EN); /* Configure the registers from AK8963 that will be read by MPU9250's * master: we will get the result directly from MPU9250's registers starting * from MPUREG_EXT_SENS_DATA_00 when read_raw() is called */ _write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); _write(MPUREG_I2C_SLV0_REG, AK8963_HXL); _write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); return true; } uint32_t AP_AK8963_SerialBus_MPU9250::get_dev_id() { return AP_COMPASS_TYPE_AK8963_MPU9250; } /* I2C implementation of the AK8963 */ AP_AK8963_SerialBus_I2C::AP_AK8963_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) : _i2c(i2c), _addr(addr) { } void AP_AK8963_SerialBus_I2C::register_write(uint8_t address, uint8_t value) { _i2c->writeRegister(_addr, address, value); } void AP_AK8963_SerialBus_I2C::register_read(uint8_t address, uint8_t *value, uint8_t count) { _i2c->readRegisters(_addr, address, count, value); } void AP_AK8963_SerialBus_I2C::read_raw(struct raw_value *rv) { _i2c->readRegisters(_addr, AK8963_HXL, sizeof(*rv), (uint8_t *) rv); } AP_HAL::Semaphore * AP_AK8963_SerialBus_I2C::get_semaphore() { return _i2c->get_semaphore(); } uint32_t AP_AK8963_SerialBus_I2C::get_dev_id() { return AP_COMPASS_TYPE_AK8963_I2C; } #endif // CONFIG_HAL_BOARD