// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); //static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); //static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); //static int8_t test_tri(uint8_t argc, const Menu::arg *argv); //static int8_t test_adc(uint8_t argc, const Menu::arg *argv); static int8_t test_ins(uint8_t argc, const Menu::arg *argv); //static int8_t test_imu(uint8_t argc, const Menu::arg *argv); //static int8_t test_dcm_eulers(uint8_t argc, const Menu::arg *argv); //static int8_t test_dcm(uint8_t argc, const Menu::arg *argv); //static int8_t test_omega(uint8_t argc, const Menu::arg *argv); //static int8_t test_stab_d(uint8_t argc, const Menu::arg *argv); static int8_t test_battery(uint8_t argc, const Menu::arg *argv); //static int8_t test_toy(uint8_t argc, const Menu::arg *argv); static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv); //static int8_t test_reverse(uint8_t argc, const Menu::arg *argv); static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv); #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_baro(uint8_t argc, const Menu::arg *argv); static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); #endif static int8_t test_mag(uint8_t argc, const Menu::arg *argv); static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); static int8_t test_logging(uint8_t argc, const Menu::arg *argv); //static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); //static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); //static int8_t test_mission(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static int8_t test_shell(uint8_t argc, const Menu::arg *argv); #endif // this is declared here to remove compiler errors extern void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon); // in Log.pde // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of printf that reads from flash memory /*static int8_t help_test(uint8_t argc, const Menu::arg *argv) * { * cliSerial->printf_P(PSTR("\n" * "Commands:\n" * " radio\n" * " servos\n" * " g_gps\n" * " imu\n" * " battery\n" * "\n")); * }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command test_menu_commands[] PROGMEM = { {"pwm", test_radio_pwm}, {"radio", test_radio}, // {"failsafe", test_failsafe}, // {"stabilize", test_stabilize}, {"gps", test_gps}, // {"adc", test_adc}, {"ins", test_ins}, // {"dcm", test_dcm_eulers}, //{"omega", test_omega}, // {"stab_d", test_stab_d}, {"battery", test_battery}, {"tune", test_tuning}, //{"tri", test_tri}, {"relay", test_relay}, {"wp", test_wp}, // {"toy", test_toy}, #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS {"altitude", test_baro}, {"sonar", test_sonar}, #endif {"compass", test_mag}, {"optflow", test_optflow}, //{"xbee", test_xbee}, {"eedump", test_eedump}, {"logging", test_logging}, // {"rawgps", test_rawgps}, // {"mission", test_mission}, //{"reverse", test_reverse}, {"nav", test_wp_nav}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 {"shell", test_shell}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { //cliSerial->printf_P(PSTR("Test Mode\n\n")); test_menu.run(); return 0; } static int8_t test_eedump(uint8_t argc, const Menu::arg *argv) { // hexdump the EEPROM for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i += 16) { cliSerial->printf_P(PSTR("%04x:"), i); for (uint16_t j = 0; j < 16; j++) { int b = hal.storage->read_byte(i+j); cliSerial->printf_P(PSTR(" %02x"), b); } cliSerial->println(); } return(0); } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); // servo Yaw //APM_RC.OutputCh(CH_7, g.rc_4.radio_out); cliSerial->printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(cliSerial->available() > 0) { return (0); } } } /* * //static int8_t * //test_tri(uint8_t argc, const Menu::arg *argv) * { * print_hit_enter(); * delay(1000); * * while(1){ * delay(20); * * // Filters radio input - adjust filters in the radio.pde file * // ---------------------------------------------------------- * read_radio(); * g.rc_4.servo_out = g.rc_4.control_in; * g.rc_4.calc_pwm(); * * cliSerial->printf_P(PSTR("input: %d\toutput%d\n"), * g.rc_4.control_in, * g.rc_4.radio_out); * * APM_RC.OutputCh(CH_TRI_YAW, g.rc_4.radio_out); * * if(cliSerial->available() > 0){ * return (0); * } * } * }*/ /* //static int8_t //test_toy(uint8_t argc, const Menu::arg *argv) { set_alt_change(ASCENDING) for(altitude_error = 2000; altitude_error > -100; altitude_error--){ int16_t temp = get_desired_climb_rate(); cliSerial->printf("%ld, %d\n", altitude_error, temp); } return 0; } { wp_distance = 0; int16_t max_speed = 0; for(int16_t i = 0; i < 200; i++){ int32_t temp = 2 * 100 * (wp_distance - g.waypoint_radius * 100); max_speed = sqrtf((float)temp); max_speed = min(max_speed, g.waypoint_speed_max); cliSerial->printf("Zspeed: %ld, %d, %ld\n", temp, max_speed, wp_distance); wp_distance += 100; } return 0; } //*/ /*static int8_t * //test_toy(uint8_t argc, const Menu::arg *argv) * { * int16_t yaw_rate; * int16_t roll_rate; * g.rc_1.control_in = -2500; * g.rc_2.control_in = 2500; * * g.toy_yaw_rate = 3; * yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; * roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; * cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); * * g.toy_yaw_rate = 2; * yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; * roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; * cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); * * g.toy_yaw_rate = 1; * yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; * roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; * cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); * }*/ static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); read_radio(); cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in); //cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); /*cliSerial->printf_P(PSTR( "min: %d" * "\t in: %d" * "\t pwm_in: %d" * "\t sout: %d" * "\t pwm_out %d\n"), * g.rc_3.radio_min, * g.rc_3.control_in, * g.rc_3.radio_in, * g.rc_3.servo_out, * g.rc_3.pwm_out * ); */ if(cliSerial->available() > 0) { return (0); } } } /* * //static int8_t * //test_failsafe(uint8_t argc, const Menu::arg *argv) * { * * #if THROTTLE_FAILSAFE * byte fail_test; * print_hit_enter(); * for(int16_t i = 0; i < 50; i++){ * delay(20); * read_radio(); * } * * oldSwitchPosition = readSwitch(); * * cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); * while(g.rc_3.control_in > 0){ * delay(20); * read_radio(); * } * * while(1){ * delay(20); * read_radio(); * * if(g.rc_3.control_in > 0){ * cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in); * fail_test++; * } * * if(oldSwitchPosition != readSwitch()){ * cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: ")); * cliSerial->println(flight_mode_strings[readSwitch()]); * fail_test++; * } * * if(g.failsafe_throttle && g.rc_3.get_failsafe()){ * cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in); * cliSerial->println(flight_mode_strings[readSwitch()]); * fail_test++; * } * * if(fail_test > 0){ * return (0); * } * if(cliSerial->available() > 0){ * cliSerial->printf_P(PSTR("LOS caused no change in ACM.\n")); * return (0); * } * } * #else * return (0); * #endif * } */ /* * //static int8_t * //test_stabilize(uint8_t argc, const Menu::arg *argv) * { * static byte ts_num; * * * print_hit_enter(); * delay(1000); * * // setup the radio * // --------------- * init_rc_in(); * * control_mode = STABILIZE; * cliSerial->printf_P(PSTR("g.pi_stabilize_roll.kP: %4.4f\n"), g.pi_stabilize_roll.kP()); * cliSerial->printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener); * * motors.auto_armed(false); * motors.armed(true); * * while(1){ * // 50 hz * if (millis() - fast_loopTimer > 19) { * delta_ms_fast_loop = millis() - fast_loopTimer; * fast_loopTimer = millis(); * G_Dt = (float)delta_ms_fast_loop / 1000.f; * * if(g.compass_enabled){ * medium_loopCounter++; * if(medium_loopCounter == 5){ * Matrix3f m = dcm.get_dcm_matrix(); * compass.read(); // Read magnetometer * compass.null_offsets(); * medium_loopCounter = 0; * } * } * * // for trim features * read_trim_switch(); * * // Filters radio input - adjust filters in the radio.pde file * // ---------------------------------------------------------- * read_radio(); * * // IMU * // --- * read_AHRS(); * * // allow us to zero out sensors with control switches * if(g.rc_5.control_in < 600){ * dcm.roll_sensor = dcm.pitch_sensor = 0; * } * * // custom code/exceptions for flight modes * // --------------------------------------- * update_current_flight_mode(); * * // write out the servo PWM values * // ------------------------------ * set_servos_4(); * * ts_num++; * if (ts_num > 10){ * ts_num = 0; * cliSerial->printf_P(PSTR("r: %d, p:%d, rc1:%d, "), * (int)(dcm.roll_sensor/100), * (int)(dcm.pitch_sensor/100), * g.rc_1.pwm_out); * * print_motor_out(); * } * // R: 1417, L: 1453 F: 1453 B: 1417 * * //cliSerial->printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); * //cliSerial->printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); * * if(cliSerial->available() > 0){ * if(g.compass_enabled){ * compass.save_offsets(); * report_compass(); * } * return (0); * } * * } * } * } */ /* * #if HIL_MODE != HIL_MODE_ATTITUDE && CONFIG_ADC == ENABLED * //static int8_t * //test_adc(uint8_t argc, const Menu::arg *argv) * { * print_hit_enter(); * cliSerial->printf_P(PSTR("ADC\n")); * delay(1000); * * adc.Init(&timer_scheduler); * * delay(50); * * while(1){ * for(int16_t i = 0; i < 9; i++){ * cliSerial->printf_P(PSTR("%.1f,"),adc.Ch(i)); * } * cliSerial->println(); * delay(20); * if(cliSerial->available() > 0){ * return (0); * } * } * } * #endif */ static int8_t test_ins(uint8_t argc, const Menu::arg *argv) { Vector3f gyro, accel; print_hit_enter(); cliSerial->printf_P(PSTR("INS\n")); delay(1000); ahrs.init(); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); delay(50); while(1) { ins.update(); gyro = ins.get_gyro(); accel = ins.get_accel(); float test = accel.length() / GRAVITY_MSS; cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %74f | %7.4f\n"), accel.x, accel.y, accel.z, gyro.x, gyro.y, gyro.z, test); delay(40); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(100); // Blink GPS LED if we don't have a fix // ------------------------------------ update_GPS_light(); g_gps->update(); if (g_gps->new_data) { cliSerial->printf_P(PSTR("Lat: ")); print_latlon(cliSerial, g_gps->latitude); cliSerial->printf_P(PSTR(", Lon ")); print_latlon(cliSerial, g_gps->longitude); cliSerial->printf_P(PSTR(", Alt: %ldm, #sats: %d\n"), g_gps->altitude/100, g_gps->num_sats); g_gps->new_data = false; }else{ cliSerial->print_P(PSTR(".")); } if(cliSerial->available() > 0) { return (0); } } return 0; } /* * //static int8_t * //test_dcm(uint8_t argc, const Menu::arg *argv) * { * print_hit_enter(); * delay(1000); * cliSerial->printf_P(PSTR("Gyro | Accel\n")); * Vector3f _cam_vector; * Vector3f _out_vector; * * G_Dt = .02; * * while(1){ * for(byte i = 0; i <= 50; i++){ * delay(20); * // IMU * // --- * read_AHRS(); * } * * Matrix3f temp = dcm.get_dcm_matrix(); * Matrix3f temp_t = dcm.get_dcm_transposed(); * * cliSerial->printf_P(PSTR("dcm\n" * "%4.4f \t %4.4f \t %4.4f \n" * "%4.4f \t %4.4f \t %4.4f \n" * "%4.4f \t %4.4f \t %4.4f \n\n"), * temp.a.x, temp.a.y, temp.a.z, * temp.b.x, temp.b.y, temp.b.z, * temp.c.x, temp.c.y, temp.c.z); * * int16_t _pitch = degrees(-asin(temp.c.x)); * int16_t _roll = degrees(atan2f(temp.c.y, temp.c.z)); * int16_t _yaw = degrees(atan2f(temp.b.x, temp.a.x)); * cliSerial->printf_P(PSTR( "angles\n" * "%d \t %d \t %d\n\n"), * _pitch, * _roll, * _yaw); * * //_out_vector = _cam_vector * temp; * //cliSerial->printf_P(PSTR( "cam\n" * // "%d \t %d \t %d\n\n"), * // (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100); * * if(cliSerial->available() > 0){ * return (0); * } * } * } */ /* * //static int8_t * //test_dcm(uint8_t argc, const Menu::arg *argv) * { * print_hit_enter(); * delay(1000); * cliSerial->printf_P(PSTR("Gyro | Accel\n")); * delay(1000); * * while(1){ * Vector3f accels = dcm.get_accel(); * cliSerial->print("accels.z:"); * cliSerial->print(accels.z); * cliSerial->print("omega.z:"); * cliSerial->print(omega.z); * delay(100); * * if(cliSerial->available() > 0){ * return (0); * } * } * } */ /*static int8_t * //test_omega(uint8_t argc, const Menu::arg *argv) * { * static byte ts_num; * float old_yaw; * * print_hit_enter(); * delay(1000); * cliSerial->printf_P(PSTR("Omega")); * delay(1000); * * G_Dt = .02; * * while(1){ * delay(20); * // IMU * // --- * read_AHRS(); * * float my_oz = (dcm.yaw - old_yaw) * 50; * * old_yaw = dcm.yaw; * * ts_num++; * if (ts_num > 2){ * ts_num = 0; * //cliSerial->printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz); * cliSerial->printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz); * } * * if(cliSerial->available() > 0){ * return (0); * } * } * return (0); * } * //*/ static int8_t test_tuning(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); while(1) { delay(200); read_radio(); tuning(); cliSerial->printf_P(PSTR("tune: %1.3f\n"), tuning_value); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_battery(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n")); while (cliSerial->read() != -1); /* flush */ while(!cliSerial->available()) { /* wait for input */ delay(100); } while (cliSerial->read() != -1); /* flush */ print_hit_enter(); // allow motors to spin motors.enable(); motors.armed(true); while(1) { delay(100); read_radio(); read_battery(); if (g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) { cliSerial->printf_P(PSTR("V: %4.4f\n"), battery_voltage1, current_amps1, current_total1); } else { cliSerial->printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"), battery_voltage1, current_amps1, current_total1); } motors.throttle_pass_through(); if(cliSerial->available() > 0) { motors.armed(false); return (0); } } motors.armed(false); return (0); } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { cliSerial->printf_P(PSTR("Relay on\n")); relay.on(); delay(3000); if(cliSerial->available() > 0) { return (0); } cliSerial->printf_P(PSTR("Relay off\n")); relay.off(); delay(3000); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); // save the alitude above home option cliSerial->printf_P(PSTR("Hold alt ")); if(g.rtl_altitude < 0) { cliSerial->printf_P(PSTR("\n")); }else{ cliSerial->printf_P(PSTR("of %dm\n"), (int)g.rtl_altitude / 100); } cliSerial->printf_P(PSTR("%d wp\n"), (int)g.command_total); cliSerial->printf_P(PSTR("Hit rad: %dm\n"), (int)g.waypoint_radius); //cliSerial->printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); report_wp(); return (0); } //static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) { /* * print_hit_enter(); * delay(1000); * while(1){ * if (Serial3.available()){ * digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS * Serial1.write(Serial3.read()); * digitalWrite(B_LED_PIN, LED_OFF); * } * if (Serial1.available()){ * digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS * Serial3.write(Serial1.read()); * digitalWrite(C_LED_PIN, LED_OFF); * } * if(cliSerial->available() > 0){ * return (0); * } * } */ //} /*static int8_t * //test_xbee(uint8_t argc, const Menu::arg *argv) * { * print_hit_enter(); * delay(1000); * cliSerial->printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); * * while(1){ * if (Serial3.available()) * Serial3.write(Serial3.read()); * * if(cliSerial->available() > 0){ * return (0); * } * } * } */ #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_baro(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); init_barometer(); while(1) { delay(100); int32_t alt = read_barometer(); // calls barometer.read() float pres = barometer.get_pressure(); int16_t temp = barometer.get_temperature(); int32_t raw_pres = barometer.get_raw_pressure(); int32_t raw_temp = barometer.get_raw_temp(); cliSerial->printf_P(PSTR("alt: %ldcm, pres: %fmbar, temp: %d/100degC," " raw pres: %ld, raw temp: %ld\n"), (long)alt, pres, (int)temp, (long)raw_pres, (long)raw_temp); if(cliSerial->available() > 0) { return (0); } } return 0; } #endif static int8_t test_mag(uint8_t argc, const Menu::arg *argv) { if(g.compass_enabled) { print_hit_enter(); while(1) { delay(100); if (compass.read()) { float heading = compass.calculate_heading(ahrs.get_dcm_matrix()); cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d\n"), (wrap_360_cd(ToDeg(heading) * 100)) /100, compass.mag_x, compass.mag_y, compass.mag_z); } else { cliSerial->println_P(PSTR("not healthy")); } if(cliSerial->available() > 0) { return (0); } } } else { cliSerial->printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } return (0); } /* * //static int8_t * //test_reverse(uint8_t argc, const Menu::arg *argv) * { * print_hit_enter(); * delay(1000); * * while(1){ * delay(20); * * // Filters radio input - adjust filters in the radio.pde file * // ---------------------------------------------------------- * g.rc_4.set_reverse(0); * g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); * g.rc_4.servo_out = g.rc_4.control_in; * g.rc_4.calc_pwm(); * cliSerial->printf_P(PSTR("PWM:%d input: %d\toutput%d "), * APM_RC.InputCh(CH_4), * g.rc_4.control_in, * g.rc_4.radio_out); * APM_RC.OutputCh(CH_6, g.rc_4.radio_out); * * * g.rc_4.set_reverse(1); * g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); * g.rc_4.servo_out = g.rc_4.control_in; * g.rc_4.calc_pwm(); * cliSerial->printf_P(PSTR("\trev input: %d\toutput%d\n"), * g.rc_4.control_in, * g.rc_4.radio_out); * * APM_RC.OutputCh(CH_7, g.rc_4.radio_out); * * if(cliSerial->available() > 0){ * g.rc_4.set_reverse(0); * return (0); * } * } * }*/ #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS /* * test the sonar */ static int8_t test_sonar(uint8_t argc, const Menu::arg *argv) { #if CONFIG_SONAR == ENABLED if(g.sonar_enabled == false) { cliSerial->printf_P(PSTR("Sonar disabled\n")); return (0); } // make sure sonar is initialised init_sonar(); print_hit_enter(); while(1) { delay(100); cliSerial->printf_P(PSTR("Sonar: %d cm\n"), sonar->read()); if(cliSerial->available() > 0) { return (0); } } #endif return (0); } #endif static int8_t test_optflow(uint8_t argc, const Menu::arg *argv) { #if OPTFLOW == ENABLED if(g.optflow_enabled) { cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); print_hit_enter(); while(1) { delay(200); optflow.update(millis()); Log_Write_Optflow(); cliSerial->printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"), optflow.x, optflow.dx, optflow.y, optflow.dy, optflow.surface_quality); if(cliSerial->available() > 0) { return (0); } } } else { cliSerial->printf_P(PSTR("OptFlow: ")); print_enabled(false); } return (0); #else return (0); #endif // OPTFLOW == ENABLED } static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv) { current_loc.lat = 389539260; current_loc.lng = -1199540200; wp_nav.set_destination(pv_latlon_to_vector(389538528,-1199541248,0)); // got 23506;, should be 22800 update_navigation(); cliSerial->printf_P(PSTR("bear: %ld\n"), wp_bearing); return 0; } /* * test the dataflash is working */ static int8_t test_logging(uint8_t argc, const Menu::arg *argv) { cliSerial->println_P(PSTR("Testing dataflash logging")); DataFlash.ShowDeviceInfo(cliSerial); return 0; } /* * static int8_t * //test_mission(uint8_t argc, const Menu::arg *argv) * { * //write out a basic mission to the EEPROM * * //{ * // uint8_t id; ///< command id * // uint8_t options; ///< options bitmask (1<<0 = relative altitude) * // uint8_t p1; ///< param 1 * // int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100) * // int32_t lat; ///< param 3 - Lattitude * 10**7 * // int32_t lng; ///< param 4 - Longitude * 10**7 * //} * * // clear home * {Location t = {0, 0, 0, 0, 0, 0}; * set_cmd_with_index(t,0);} * * // CMD opt pitch alt/cm * {Location t = {MAV_CMD_NAV_TAKEOFF, WP_OPTION_RELATIVE, 0, 100, 0, 0}; * set_cmd_with_index(t,1);} * * if (!strcmp_P(argv[1].str, PSTR("wp"))) { * * // CMD opt * {Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0}; * set_cmd_with_index(t,2);} * // CMD opt * {Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0}; * set_cmd_with_index(t,3);} * * // CMD opt * {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; * set_cmd_with_index(t,4);} * * } else { * //2250 = 25 meteres * // CMD opt p1 //alt //NS //WE * {Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 10, 0, 0, 0}; // 19 * set_cmd_with_index(t,2);} * * // CMD opt dir angle/deg deg/s relative * {Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1}; * set_cmd_with_index(t,3);} * * // CMD opt * {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; * set_cmd_with_index(t,4);} * * } * * g.rtl_altitude.set_and_save(300); * g.command_total.set_and_save(4); * g.waypoint_radius.set_and_save(3); * * test_wp(NULL, NULL); * return (0); * } */ #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 /* * run a debug shell */ static int8_t test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif static void print_hit_enter() { cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); } /* * //static void fake_out_gps() * { * static float rads; * g_gps->new_data = true; * g_gps->fix = true; * * //int length = g.rc_6.control_in; * rads += .05; * * if (rads > 6.28){ * rads = 0; * } * * g_gps->latitude = 377696000; // Y * g_gps->longitude = -1224319000; // X * g_gps->altitude = 9000; // meters * 100 * * //next_WP.lng = home.lng - length * sin(rads); // X * //next_WP.lat = home.lat + length * cos(rads); // Y * } * */ /* * //static void print_motor_out(){ * cliSerial->printf("out: R: %d, L: %d F: %d B: %d\n", * (motor_out[CH_1] - g.rc_3.radio_min), * (motor_out[CH_2] - g.rc_3.radio_min), * (motor_out[CH_3] - g.rc_3.radio_min), * (motor_out[CH_4] - g.rc_3.radio_min)); * } */ #endif // CLI_ENABLED