/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
/*
FRSky FPort implementation, with thanks to BetaFlight for
specification and code reference
*/
#include "AP_RCProtocol_FPort.h"
#include
#include
#include
#include
#include
extern const AP_HAL::HAL& hal;
#define FRAME_HEAD 0x7E
#define FRAME_DLE 0x7D
#define FRAME_XOR 0x20
#define FRAME_LEN_CONTROL 0x19
#define FRAME_LEN_DOWNLINK 0x08
#define MIN_FRAME_SIZE 12
#define MAX_CHANNELS 16
#define FLAGS_FAILSAFE_BIT 3
#define FLAGS_FRAMELOST_BIT 2
#define CHAN_SCALE_FACTOR ((2000.0 - 1000.0) / (1800.0 - 200.0))
#define CHAN_SCALE_OFFSET (int)(1000.0 - (CHAN_SCALE_FACTOR * 200.0 + 0.5f))
#define FPORT_TYPE_CONTROL 0
#define FPORT_TYPE_DOWNLINK 1
struct PACKED FPort_Frame {
uint8_t header; // 0x7E
uint8_t len; // 0x19 for control, 0x08 for downlink
uint8_t type;
union {
struct PACKED {
uint16_t chan0 : 11;
uint16_t chan1 : 11;
uint16_t chan2 : 11;
uint16_t chan3 : 11;
uint16_t chan4 : 11;
uint16_t chan5 : 11;
uint16_t chan6 : 11;
uint16_t chan7 : 11;
uint16_t chan8 : 11;
uint16_t chan9 : 11;
uint16_t chan10 : 11;
uint16_t chan11 : 11;
uint16_t chan12 : 11;
uint16_t chan13 : 11;
uint16_t chan14 : 11;
uint16_t chan15 : 11;
uint8_t flags;
uint8_t rssi;
uint8_t crc;
uint8_t end;
} control;
struct {
uint8_t prim;
uint16_t appid;
uint8_t data[4];
uint8_t crc;
uint8_t end;
} downlink;
};
};
static_assert(sizeof(FPort_Frame) == FPORT_CONTROL_FRAME_SIZE, "FPort_Frame incorrect size");
// constructor
AP_RCProtocol_FPort::AP_RCProtocol_FPort(AP_RCProtocol &_frontend, bool _inverted) :
AP_RCProtocol_Backend(_frontend),
inverted(_inverted)
{}
// decode a full FPort control frame
void AP_RCProtocol_FPort::decode_control(const FPort_Frame &frame)
{
uint16_t values[MAX_CHANNELS];
// pull out of bitfields
values[0] = frame.control.chan0;
values[1] = frame.control.chan1;
values[2] = frame.control.chan2;
values[3] = frame.control.chan3;
values[4] = frame.control.chan4;
values[5] = frame.control.chan5;
values[6] = frame.control.chan6;
values[7] = frame.control.chan7;
values[8] = frame.control.chan8;
values[9] = frame.control.chan9;
values[10] = frame.control.chan10;
values[11] = frame.control.chan11;
values[12] = frame.control.chan12;
values[13] = frame.control.chan13;
values[14] = frame.control.chan14;
values[15] = frame.control.chan15;
// scale values
for (uint8_t i=0; ireceive_time_constraint_us(1);
uint64_t now = AP_HAL::micros64();
uint64_t tdelay = now - tend;
if (tdelay > 2500) {
// we've been too slow in responding
return;
}
/*
get the SPort data from FRSky_Telem and send it as an uplink
packet
*/
uint8_t frametype;
uint16_t appid;
uint32_t data;
if (AP_Frsky_Telem::get_telem_data(frametype, appid, data)) {
uint8_t buf[10];
buf[0] = 0x08;
buf[1] = 0x81;
buf[2] = frametype;
buf[3] = appid & 0xFF;
buf[4] = appid >> 8;
memcpy(&buf[5], &data, 4);
uint16_t sum = 0;
for (uint8_t i=0; i> 8));
buf[9] = sum;
// perform byte stuffing per FPort spec
uint8_t len = 0;
uint8_t buf2[sizeof(buf)*2+1];
if (rc().fport_pad()) {
// this padding helps on some uarts that have hw pullups
buf2[len++] = 0xff;
}
for (uint8_t i=0; iwrite(buf2, len);
}
#endif
}
/*
process a FPort input pulse of the given width
*/
void AP_RCProtocol_FPort::process_pulse(uint32_t width_s0, uint32_t width_s1)
{
if (have_UART()) {
// if we can use a UART we would much prefer to, as it allows
// us to send SPORT data out
return;
}
uint32_t w0 = width_s0;
uint32_t w1 = width_s1;
if (inverted) {
w0 = saved_width;
w1 = width_s0;
saved_width = width_s1;
}
uint8_t b;
if (ss.process_pulse(w0, w1, b)) {
_process_byte(ss.get_byte_timestamp_us(), b);
}
}
// support byte input
void AP_RCProtocol_FPort::_process_byte(uint32_t timestamp_us, uint8_t b)
{
const bool have_frame_gap = (timestamp_us - byte_input.last_byte_us >= 2000U);
byte_input.last_byte_us = timestamp_us;
if (have_frame_gap) {
// if we have a frame gap then this must be the start of a new
// frame
byte_input.ofs = 0;
byte_input.got_DLE = false;
}
if (b != FRAME_HEAD && byte_input.ofs == 0) {
// definately not FPort, missing header byte
return;
}
// handle byte-stuffing decode
if (byte_input.got_DLE) {
b ^= FRAME_XOR;
byte_input.got_DLE = false;
} else if (b == FRAME_DLE) {
byte_input.got_DLE = true;
return;
}
byte_input.buf[byte_input.ofs++] = b;
const FPort_Frame *frame = (const FPort_Frame *)&byte_input.buf[0];
if (byte_input.ofs == 2) {
// check for valid lengths
if (frame->len != FRAME_LEN_CONTROL &&
frame->len != FRAME_LEN_DOWNLINK) {
// invalid, reset
goto reset;
}
}
if (byte_input.ofs == 3) {
// check for valid lengths
if ((frame->type == FPORT_TYPE_CONTROL && frame->len != FRAME_LEN_CONTROL) ||
(frame->type == FPORT_TYPE_DOWNLINK && frame->len != FRAME_LEN_DOWNLINK)) {
goto reset;
}
}
if (frame->type == FPORT_TYPE_CONTROL && byte_input.ofs == FRAME_LEN_CONTROL + 4) {
if (check_checksum()) {
decode_control(*frame);
}
goto reset;
} else if (frame->type == FPORT_TYPE_DOWNLINK && byte_input.ofs == FRAME_LEN_DOWNLINK + 4) {
if (check_checksum()) {
decode_downlink(*frame);
}
goto reset;
}
return;
reset:
byte_input.ofs = 0;
byte_input.got_DLE = false;
}
// check checksum byte
bool AP_RCProtocol_FPort::check_checksum(void)
{
uint8_t len = byte_input.buf[1]+2;
const uint8_t *b = &byte_input.buf[1];
uint16_t sum = 0;
for (uint8_t i=0; i> 8);
return sum == 0xff;
}
// support byte input
void AP_RCProtocol_FPort::process_byte(uint8_t b, uint32_t baudrate)
{
if (baudrate != 115200) {
return;
}
_process_byte(AP_HAL::micros(), b);
}