// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Sensors are not available in HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE static void ReadSCP1000(void) {} #if CONFIG_SONAR == ENABLED static void init_sonar(void) { #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC sonar.calculate_scaler(g.sonar_type, 3.3); #else sonar.calculate_scaler(g.sonar_type, 5.0); #endif } #endif static void init_barometer(void) { #if HIL_MODE == HIL_MODE_SENSORS gcs_update(); // look for inbound hil packets for initialization #endif ground_temperature = barometer.get_temperature(); int i; // We take some readings... for(i = 0; i < 60; i++){ delay(20); // get new data from absolute pressure sensor barometer.read(); //Serial.printf("init %ld, %d, -, %ld, %ld\n", barometer.RawTemp, barometer.Temp, barometer.RawPress, barometer.Press); } for(i = 0; i < 20; i++){ delay(20); #if HIL_MODE == HIL_MODE_SENSORS gcs_update(); // look for inbound hil packets #endif // Get initial data from absolute pressure sensor barometer.read(); ground_pressure = barometer.get_pressure(); ground_temperature = (ground_temperature * 7 + barometer.get_temperature()) / 8; //Serial.printf("init %ld, %d, -, %ld, %ld, -, %d, %ld\n", barometer.RawTemp, barometer.Temp, barometer.RawPress, barometer.Press, ground_temperature, ground_pressure); } } static void reset_baro(void) { ground_pressure = barometer.get_pressure(); ground_temperature = barometer.get_temperature(); } static int32_t read_barometer(void) { float x, scaling, temp; barometer.read(); float abs_pressure = barometer.get_pressure(); //Serial.printf("%ld, %ld, %ld, %ld\n", barometer.RawTemp, barometer.RawPress, barometer.Press, abs_pressure); scaling = (float)ground_pressure / abs_pressure; temp = ((float)ground_temperature / 10.0f) + 273.15f; x = log(scaling) * temp * 29271.267f; return (x / 10); } #endif // HIL_MODE != HIL_MODE_ATTITUDE static void init_compass() { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft dcm.set_compass(&compass); compass.init(); compass.get_offsets(); // load offsets to account for airframe magnetic interference compass.null_offsets_enable(); } static void init_optflow() { #ifdef OPTFLOW_ENABLED if( optflow.init(false) == false ) { g.optflow_enabled = false; SendDebug("\nFailed to Init OptFlow "); } optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view // setup timed read of sensor //timer_scheduler.register_process(&AP_OpticalFlow::read); #endif } static void read_battery(void) { if(g.battery_monitoring == 0){ battery_voltage1 = 0; return; } if(g.battery_monitoring == 3 || g.battery_monitoring == 4) battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN_1)) * .1 + battery_voltage1 * .9; if(g.battery_monitoring == 4) { current_amps1 = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps1 * .9; //reads power sensor current pin current_total1 += current_amps1 * 0.0002778; // .0002778 is 1/3600 (conversion to hours) } #if BATTERY_EVENT == 1 //if(battery_voltage < g.low_voltage) // low_battery_event(); if((battery_voltage1 < g.low_voltage) || (g.battery_monitoring == 4 && current_total1 > g.pack_capacity)){ low_battery_event(); #if PIEZO_LOW_VOLTAGE == 1 // Only Activate if a battery is connected to avoid alarm on USB only if (battery_voltage1 > 1){ piezo_on(); }else{ piezo_off(); } #endif }else{ #if PIEZO_LOW_VOLTAGE == 1 piezo_off(); #endif } #endif } //v: 10.9453, a: 17.4023, mah: 8.2