/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // XXX TODO: convert these PI rate controlers to a Class static int get_stabilize_roll(long target_angle) { long error; long rate; error = wrap_180(target_angle - dcm.roll_sensor); // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // desired Rate: rate = g.pi_stabilize_roll.get_pi(error, delta_ms_fast_loop); //Serial.printf("%d\t%d\t%d ", (int)target_angle, (int)error, (int)rate); #if FRAME_CONFIG != HELI_FRAME // cannot use rate control for helicopters // Rate P: error = rate - (long)(degrees(omega.x) * 100.0); rate = g.pi_rate_roll.get_pi(error, delta_ms_fast_loop); //Serial.printf("%d\t%d\n", (int)error, (int)rate); #endif // output control: return (int)constrain(rate, -2500, 2500); } static int get_stabilize_pitch(long target_angle) { long error; long rate; error = wrap_180(target_angle - dcm.pitch_sensor); // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // desired Rate: rate = g.pi_stabilize_pitch.get_pi(error, delta_ms_fast_loop); //Serial.printf("%d\t%d\t%d ", (int)target_angle, (int)error, (int)rate); #if FRAME_CONFIG != HELI_FRAME // cannot use rate control for helicopters // Rate P: error = rate - (long)(degrees(omega.y) * 100.0); rate = g.pi_rate_pitch.get_pi(error, delta_ms_fast_loop); //Serial.printf("%d\t%d\n", (int)error, (int)rate); #endif // output control: return (int)constrain(rate, -2500, 2500); } #define YAW_ERROR_MAX 2000 static int get_stabilize_yaw(long target_angle) { long error; long rate; yaw_error = wrap_180(target_angle - dcm.yaw_sensor); // limit the error we're feeding to the PID yaw_error = constrain(yaw_error, -YAW_ERROR_MAX, YAW_ERROR_MAX); rate = g.pi_stabilize_yaw.get_pi(yaw_error, delta_ms_fast_loop); //Serial.printf("%u\t%d\t%d\t", (int)target_angle, (int)error, (int)rate); #if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters if( ! g.heli_ext_gyro_enabled ) { // Rate P: error = rate - (long)(degrees(omega.z) * 100.0); rate = g.pi_rate_yaw.get_pi(error, delta_ms_fast_loop); } #else // Rate P: error = rate - (long)(degrees(omega.z) * 100.0); rate = g.pi_rate_yaw.get_pi(error, delta_ms_fast_loop); //Serial.printf("%d\t%d\n", (int)error, (int)rate); #endif // output control: return (int)constrain(rate, -2500, 2500); } #define ALT_ERROR_MAX 300 static int get_nav_throttle(long z_error, int target_speed) { int rate_error; int throttle; float scaler = (float)target_speed/(float)ALT_ERROR_MAX; // limit error to prevent I term run up z_error = constrain(z_error, -ALT_ERROR_MAX, ALT_ERROR_MAX); target_speed = z_error * scaler; rate_error = target_speed - altitude_rate; rate_error = constrain(rate_error, -90, 90); throttle = g.pi_throttle.get_pi(rate_error, delta_ms_medium_loop); return g.throttle_cruise + rate_error; } static int get_rate_roll(long target_rate) { long error; target_rate = constrain(target_rate, -2500, 2500); error = (target_rate * 4.5) - (long)(degrees(omega.x) * 100.0); target_rate = g.pi_rate_roll.get_pi(error, delta_ms_fast_loop); // output control: return (int)constrain(target_rate, -2500, 2500); } static int get_rate_pitch(long target_rate) { long error; target_rate = constrain(target_rate, -2500, 2500); error = (target_rate * 4.5) - (long)(degrees(omega.y) * 100.0); target_rate = g.pi_rate_pitch.get_pi(error, delta_ms_fast_loop); // output control: return (int)constrain(target_rate, -2500, 2500); } static int get_rate_yaw(long target_rate) { long error; error = (target_rate * 4.5) - (long)(degrees(omega.z) * 100.0); target_rate = g.pi_rate_yaw.get_pi(error, delta_ms_fast_loop); // output control: return (int)constrain(target_rate, -2500, 2500); } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations static void reset_nav_I(void) { g.pi_loiter_lat.reset_I(); g.pi_loiter_lat.reset_I(); g.pi_nav_lat.reset_I(); g.pi_nav_lon.reset_I(); g.pi_crosstrack.reset_I(); g.pi_throttle.reset_I(); } /************************************************************* throttle control ****************************************************************/ // user input: // ----------- static int get_throttle(int throttle_input) { throttle_input = (float)throttle_input * angle_boost(); //throttle_input = max(throttle_slew, throttle_input); return max(throttle_input, 0); } static long get_nav_yaw_offset(int yaw_input, int reset) { long _yaw; if(reset == 0){ // we are on the ground return dcm.yaw_sensor; }else{ // re-define nav_yaw if we have stick input if(yaw_input != 0){ // set nav_yaw + or - the current location _yaw = (long)yaw_input + dcm.yaw_sensor; // we need to wrap our value so we can be 0 to 360 (*100) return wrap_360(_yaw); }else{ // no stick input, lets not change nav_yaw return nav_yaw; } } } /* static int alt_hold_velocity() { // subtract filtered Accel float error = abs(next_WP.alt - current_loc.alt); error = min(error, 200); error = 1 - (error/ 200.0); return (accels_rot.z + 9.81) * accel_gain * error; } */ static float angle_boost() { float temp = cos_pitch_x * cos_roll_x; temp = 2.0 - constrain(temp, .5, 1.0); return temp; }