#include "Copter.h" #if HAL_MAX_CAN_PROTOCOL_DRIVERS #include #endif bool AP_Arming_Copter::pre_arm_checks(bool display_failure) { const bool passed = run_pre_arm_checks(display_failure); set_pre_arm_check(passed); return passed; } // perform pre-arm checks // return true if the checks pass successfully bool AP_Arming_Copter::run_pre_arm_checks(bool display_failure) { // exit immediately if already armed if (copter.motors->armed()) { return true; } // check if motor interlock and Emergency Stop aux switches are used // at the same time. This cannot be allowed. if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) && rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)){ check_failed(display_failure, "Interlock/E-Stop Conflict"); return false; } // check if motor interlock aux switch is in use // if it is, switch needs to be in disabled position to arm // otherwise exit immediately. if (copter.ap.using_interlock && copter.ap.motor_interlock_switch) { check_failed(display_failure, "Motor Interlock Enabled"); return false; } // if we are using motor Estop switch, it must not be in Estop position if (SRV_Channels::get_emergency_stop()){ check_failed(display_failure, "Motor Emergency Stopped"); return false; } if (!disarm_switch_checks(display_failure)) { return false; } // if pre arm checks are disabled run only the mandatory checks if (checks_to_perform == 0) { return mandatory_checks(display_failure); } return parameter_checks(display_failure) & motor_checks(display_failure) & oa_checks(display_failure) & gcs_failsafe_check(display_failure) & winch_checks(display_failure) & alt_checks(display_failure) #if AP_AIRSPEED_ENABLED & AP_Arming::airspeed_checks(display_failure) #endif & AP_Arming::pre_arm_checks(display_failure); } bool AP_Arming_Copter::barometer_checks(bool display_failure) { if (!AP_Arming::barometer_checks(display_failure)) { return false; } bool ret = true; // check Baro if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_BARO)) { // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = copter.inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref) { if (fabsf(copter.inertial_nav.get_position_z_up_cm() - copter.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { check_failed(ARMING_CHECK_BARO, display_failure, "Altitude disparity"); ret = false; } } } return ret; } bool AP_Arming_Copter::ins_checks(bool display_failure) { bool ret = AP_Arming::ins_checks(display_failure); if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) { // get ekf attitude (if bad, it's usually the gyro biases) if (!pre_arm_ekf_attitude_check()) { check_failed(ARMING_CHECK_INS, display_failure, "EKF attitude is bad"); ret = false; } } return ret; } bool AP_Arming_Copter::board_voltage_checks(bool display_failure) { if (!AP_Arming::board_voltage_checks(display_failure)) { return false; } // check battery voltage if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_VOLTAGE)) { if (copter.battery.has_failsafed()) { check_failed(ARMING_CHECK_VOLTAGE, display_failure, "Battery failsafe"); return false; } } return true; } bool AP_Arming_Copter::parameter_checks(bool display_failure) { // check various parameter values if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) { // failsafe parameter checks if (copter.g.failsafe_throttle) { // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 if (copter.channel_throttle->get_radio_min() <= copter.g.failsafe_throttle_value+10 || copter.g.failsafe_throttle_value < 910) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check FS_THR_VALUE"); return false; } } if (copter.g.failsafe_gcs == FS_GCS_ENABLED_CONTINUE_MISSION) { // FS_GCS_ENABLE == 2 has been removed check_failed(ARMING_CHECK_PARAMETERS, display_failure, "FS_GCS_ENABLE=2 removed, see FS_OPTIONS"); } // lean angle parameter check if (copter.aparm.angle_max < 1000 || copter.aparm.angle_max > 8000) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ANGLE_MAX"); return false; } // acro balance parameter check #if MODE_ACRO_ENABLED == ENABLED || MODE_SPORT_ENABLED == ENABLED if ((copter.g.acro_balance_roll > copter.attitude_control->get_angle_roll_p().kP()) || (copter.g.acro_balance_pitch > copter.attitude_control->get_angle_pitch_p().kP())) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ACRO_BAL_ROLL/PITCH"); return false; } #endif // pilot-speed-up parameter check if (copter.g.pilot_speed_up <= 0) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check PILOT_SPEED_UP"); return false; } #if FRAME_CONFIG == HELI_FRAME if (copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD && copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_DUAL && copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid Heli FRAME_CLASS"); return false; } // check helicopter parameters if (!copter.motors->parameter_check(display_failure)) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Heli motors checks failed"); return false; } char fail_msg[50]; // check input mangager parameters if (!copter.input_manager.parameter_check(fail_msg, ARRAY_SIZE(fail_msg))) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "%s", fail_msg); return false; } // Inverted flight feature disabled for Heli Single and Dual frames if (copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD && rc().find_channel_for_option(RC_Channel::aux_func_t::INVERTED) != nullptr) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Inverted flight option not supported"); return false; } // Ensure an Aux Channel is configured for motor interlock if (rc().find_channel_for_option(RC_Channel::aux_func_t::MOTOR_INTERLOCK) == nullptr) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Motor Interlock not configured"); return false; } #else if (copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI_QUAD || copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI_DUAL || copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid MultiCopter FRAME_CLASS"); return false; } // checks MOT_PWM_MIN/MAX for acceptable values if (!copter.motors->check_mot_pwm_params()) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check MOT_PWM_MIN/MAX"); return false; } #endif // HELI_FRAME // checks when using range finder for RTL #if MODE_RTL_ENABLED == ENABLED if (copter.mode_rtl.get_alt_type() == ModeRTL::RTLAltType::RTL_ALTTYPE_TERRAIN) { // get terrain source from wpnav const char *failure_template = "RTL_ALT_TYPE is above-terrain but %s"; switch (copter.wp_nav->get_terrain_source()) { case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE: check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "no terrain data"); return false; break; case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER: if (!copter.rangefinder_state.enabled || !copter.rangefinder.has_orientation(ROTATION_PITCH_270)) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "no rangefinder"); return false; } // check if RTL_ALT is higher than rangefinder's max range if (copter.g.rtl_altitude > copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "RTL_ALT>RNGFND_MAX_CM"); return false; } break; case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE: #if AP_TERRAIN_AVAILABLE if (!copter.terrain.enabled()) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "terrain disabled"); return false; } // check terrain data is loaded uint16_t terr_pending, terr_loaded; copter.terrain.get_statistics(terr_pending, terr_loaded); if (terr_pending != 0) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "waiting for terrain data"); return false; } #else check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "terrain disabled"); return false; #endif break; } } #endif // check adsb avoidance failsafe #if HAL_ADSB_ENABLED if (copter.failsafe.adsb) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "ADSB threat detected"); return false; } #endif // ensure controllers are OK with us arming: char failure_msg[50]; if (!copter.pos_control->pre_arm_checks("PSC", failure_msg, ARRAY_SIZE(failure_msg))) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg); return false; } if (!copter.attitude_control->pre_arm_checks("ATC", failure_msg, ARRAY_SIZE(failure_msg))) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg); return false; } } return true; } // check motor setup was successful bool AP_Arming_Copter::motor_checks(bool display_failure) { // check motors initialised correctly if (!copter.motors->initialised_ok()) { check_failed(display_failure, "Check firmware or FRAME_CLASS"); return false; } // servo_test check #if FRAME_CONFIG == HELI_FRAME if (copter.motors->servo_test_running()) { check_failed(display_failure, "Servo Test is still running"); return false; } #endif // further checks enabled with parameters if (!check_enabled(ARMING_CHECK_PARAMETERS)) { return true; } // if this is a multicopter using ToshibaCAN ESCs ensure MOT_PMW_MIN = 1000, MOT_PWM_MAX = 2000 #if HAL_MAX_CAN_PROTOCOL_DRIVERS && (FRAME_CONFIG != HELI_FRAME) bool tcan_active = false; uint8_t tcan_index = 0; const uint8_t num_drivers = AP::can().get_num_drivers(); for (uint8_t i = 0; i < num_drivers; i++) { if (AP::can().get_driver_type(i) == AP_CANManager::Driver_Type_ToshibaCAN) { tcan_active = true; tcan_index = i; } } if (tcan_active) { // check motor range parameters if (copter.motors->get_pwm_output_min() != 1000) { check_failed(display_failure, "TCAN ESCs require MOT_PWM_MIN=1000"); return false; } if (copter.motors->get_pwm_output_max() != 2000) { check_failed(display_failure, "TCAN ESCs require MOT_PWM_MAX=2000"); return false; } // check we have an ESC present for every SERVOx_FUNCTION = motorx // find and report first missing ESC, extra ESCs are OK AP_ToshibaCAN *tcan = AP_ToshibaCAN::get_tcan(tcan_index); const uint32_t motors_mask = copter.motors->get_motor_mask(); const uint32_t esc_mask = tcan->get_present_mask(); uint8_t escs_missing = 0; uint8_t first_missing = 0; for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { uint32_t bit = 1UL << i; if (((motors_mask & bit) > 0) && ((esc_mask & bit) == 0)) { escs_missing++; if (first_missing == 0) { first_missing = i+1; } } } if (escs_missing > 0) { check_failed(display_failure, "TCAN missing %d escs, check #%d", (int)escs_missing, (int)first_missing); return false; } } #endif return true; } bool AP_Arming_Copter::oa_checks(bool display_failure) { #if AC_OAPATHPLANNER_ENABLED == ENABLED char failure_msg[50]; if (copter.g2.oa.pre_arm_check(failure_msg, ARRAY_SIZE(failure_msg))) { return true; } // display failure if (strlen(failure_msg) == 0) { check_failed(display_failure, "%s", "Check Object Avoidance"); } else { check_failed(display_failure, "%s", failure_msg); } return false; #else return true; #endif } bool AP_Arming_Copter::rc_calibration_checks(bool display_failure) { const RC_Channel *channels[] = { copter.channel_roll, copter.channel_pitch, copter.channel_throttle, copter.channel_yaw }; copter.ap.pre_arm_rc_check = rc_checks_copter_sub(display_failure, channels) & AP_Arming::rc_calibration_checks(display_failure); return copter.ap.pre_arm_rc_check; } // performs pre_arm gps related checks and returns true if passed bool AP_Arming_Copter::gps_checks(bool display_failure) { // check if fence requires GPS bool fence_requires_gps = false; #if AC_FENCE == ENABLED // if circular or polygon fence is enabled we need GPS fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0; #endif // check if flight mode requires GPS bool mode_requires_gps = copter.flightmode->requires_GPS() || fence_requires_gps || (copter.simple_mode == Copter::SimpleMode::SUPERSIMPLE); // call parent gps checks if (mode_requires_gps) { if (!AP_Arming::gps_checks(display_failure)) { AP_Notify::flags.pre_arm_gps_check = false; return false; } } // run mandatory gps checks first if (!mandatory_gps_checks(display_failure)) { AP_Notify::flags.pre_arm_gps_check = false; return false; } // return true if GPS is not required if (!mode_requires_gps) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // return true immediately if gps check is disabled if (!(checks_to_perform == ARMING_CHECK_ALL || checks_to_perform & ARMING_CHECK_GPS)) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // warn about hdop separately - to prevent user confusion with no gps lock if (copter.gps.get_hdop() > copter.g.gps_hdop_good) { check_failed(ARMING_CHECK_GPS, display_failure, "High GPS HDOP"); AP_Notify::flags.pre_arm_gps_check = false; return false; } // if we got here all must be ok AP_Notify::flags.pre_arm_gps_check = true; return true; } // check ekf attitude is acceptable bool AP_Arming_Copter::pre_arm_ekf_attitude_check() { // get ekf filter status nav_filter_status filt_status = copter.inertial_nav.get_filter_status(); return filt_status.flags.attitude; } // check nothing is too close to vehicle bool AP_Arming_Copter::proximity_checks(bool display_failure) const { #if HAL_PROXIMITY_ENABLED if (!AP_Arming::proximity_checks(display_failure)) { return false; } if (!((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS))) { // check is disabled return true; } // get closest object if we might use it for avoidance #if AC_AVOID_ENABLED == ENABLED float angle_deg, distance; if (copter.avoid.proximity_avoidance_enabled() && copter.g2.proximity.get_closest_object(angle_deg, distance)) { // display error if something is within 60cm const float tolerance = 0.6f; if (distance <= tolerance) { check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Proximity %d deg, %4.2fm (want > %0.1fm)", (int)angle_deg, (double)distance, (double)tolerance); return false; } } #endif #endif return true; } // performs mandatory gps checks. returns true if passed bool AP_Arming_Copter::mandatory_gps_checks(bool display_failure) { // check if flight mode requires GPS bool mode_requires_gps = copter.flightmode->requires_GPS(); // always check if inertial nav has started and is ready const auto &ahrs = AP::ahrs(); char failure_msg[50] = {}; if (!ahrs.pre_arm_check(mode_requires_gps, failure_msg, sizeof(failure_msg))) { check_failed(display_failure, "AHRS: %s", failure_msg); return false; } // check if fence requires GPS bool fence_requires_gps = false; #if AC_FENCE == ENABLED // if circular or polygon fence is enabled we need GPS fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0; #endif if (mode_requires_gps) { if (!copter.position_ok()) { // vehicle level position estimate checks check_failed(display_failure, "Need Position Estimate"); return false; } } else { if (fence_requires_gps) { if (!copter.position_ok()) { // clarify to user why they need GPS in non-GPS flight mode check_failed(display_failure, "Fence enabled, need position estimate"); return false; } } else { // return true if GPS is not required return true; } } // check for GPS glitch (as reported by EKF) nav_filter_status filt_status; if (ahrs.get_filter_status(filt_status)) { if (filt_status.flags.gps_glitching) { check_failed(display_failure, "GPS glitching"); return false; } } // check EKF's compass, position and velocity variances are below failsafe threshold if (copter.g.fs_ekf_thresh > 0.0f) { float vel_variance, pos_variance, hgt_variance, tas_variance; Vector3f mag_variance; ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance); if (mag_variance.length() >= copter.g.fs_ekf_thresh) { check_failed(display_failure, "EKF compass variance"); return false; } if (pos_variance >= copter.g.fs_ekf_thresh) { check_failed(display_failure, "EKF position variance"); return false; } if (vel_variance >= copter.g.fs_ekf_thresh) { check_failed(display_failure, "EKF velocity variance"); return false; } } // check if home is too far from EKF origin if (copter.far_from_EKF_origin(ahrs.get_home())) { check_failed(display_failure, "Home too far from EKF origin"); return false; } // check if vehicle is too far from EKF origin if (copter.far_from_EKF_origin(copter.current_loc)) { check_failed(display_failure, "Vehicle too far from EKF origin"); return false; } // if we got here all must be ok return true; } // Check GCS failsafe bool AP_Arming_Copter::gcs_failsafe_check(bool display_failure) { if (copter.failsafe.gcs) { check_failed(display_failure, "GCS failsafe on"); return false; } return true; } // check winch bool AP_Arming_Copter::winch_checks(bool display_failure) const { #if WINCH_ENABLED == ENABLED // pass if parameter or all arming checks disabled if (((checks_to_perform & ARMING_CHECK_ALL) == 0) && ((checks_to_perform & ARMING_CHECK_PARAMETERS) == 0)) { return true; } const AP_Winch *winch = AP::winch(); if (winch == nullptr) { return true; } char failure_msg[50] = {}; if (!winch->pre_arm_check(failure_msg, sizeof(failure_msg))) { check_failed(display_failure, "%s", failure_msg); return false; } #endif return true; } // performs altitude checks. returns true if passed bool AP_Arming_Copter::alt_checks(bool display_failure) { // always EKF altitude estimate if (!copter.flightmode->has_manual_throttle() && !copter.ekf_alt_ok()) { check_failed(display_failure, "Need Alt Estimate"); return false; } return true; } // arm_checks - perform final checks before arming // always called just before arming. Return true if ok to arm // has side-effect that logging is started bool AP_Arming_Copter::arm_checks(AP_Arming::Method method) { const auto &ahrs = AP::ahrs(); // always check if inertial nav has started and is ready if (!ahrs.healthy()) { check_failed(true, "AHRS not healthy"); return false; } #ifndef ALLOW_ARM_NO_COMPASS // if non-compass is source of heading we can skip compass health check if (!ahrs.using_noncompass_for_yaw()) { const Compass &_compass = AP::compass(); // check compass health if (!_compass.healthy()) { check_failed(true, "Compass not healthy"); return false; } } #endif // always check if the current mode allows arming if (!copter.flightmode->allows_arming(method)) { check_failed(true, "Mode not armable"); return false; } // always check motors if (!motor_checks(true)) { return false; } // succeed if arming checks are disabled if (checks_to_perform == 0) { return true; } // check lean angle if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) { if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > copter.aparm.angle_max) { check_failed(ARMING_CHECK_INS, true, "Leaning"); return false; } } // check adsb #if HAL_ADSB_ENABLED if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) { if (copter.failsafe.adsb) { check_failed(ARMING_CHECK_PARAMETERS, true, "ADSB threat detected"); return false; } } #endif // check throttle if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) { #if FRAME_CONFIG == HELI_FRAME const char *rc_item = "Collective"; #else const char *rc_item = "Throttle"; #endif // check throttle is not too low - must be above failsafe throttle if (copter.g.failsafe_throttle != FS_THR_DISABLED && copter.channel_throttle->get_radio_in() < copter.g.failsafe_throttle_value) { check_failed(ARMING_CHECK_RC, true, "%s below failsafe", rc_item); return false; } // check throttle is not too high - skips checks if arming from GCS in Guided if (!(method == AP_Arming::Method::MAVLINK && (copter.flightmode->mode_number() == Mode::Number::GUIDED || copter.flightmode->mode_number() == Mode::Number::GUIDED_NOGPS))) { // above top of deadband is too always high if (copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in()) > 0.0f) { check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item); return false; } // in manual modes throttle must be at zero #if FRAME_CONFIG != HELI_FRAME if ((copter.flightmode->has_manual_throttle() || copter.flightmode->mode_number() == Mode::Number::DRIFT) && copter.channel_throttle->get_control_in() > 0) { check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item); return false; } #endif } } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { check_failed(true, "Safety Switch"); return false; } // superclass method should always be the last thing called; it // has side-effects which would need to be cleaned up if one of // our arm checks failed return AP_Arming::arm_checks(method); } // mandatory checks that will be run if ARMING_CHECK is zero or arming forced bool AP_Arming_Copter::mandatory_checks(bool display_failure) { // call mandatory gps checks and update notify status because regular gps checks will not run bool result = mandatory_gps_checks(display_failure); AP_Notify::flags.pre_arm_gps_check = result; // call mandatory alt check if (!alt_checks(display_failure)) { result = false; } return result & AP_Arming::mandatory_checks(display_failure); } void AP_Arming_Copter::set_pre_arm_check(bool b) { copter.ap.pre_arm_check = b; AP_Notify::flags.pre_arm_check = b; } bool AP_Arming_Copter::arm(const AP_Arming::Method method, const bool do_arming_checks) { static bool in_arm_motors = false; // exit immediately if already in this function if (in_arm_motors) { return false; } in_arm_motors = true; // return true if already armed if (copter.motors->armed()) { in_arm_motors = false; return true; } if (!AP_Arming::arm(method, do_arming_checks)) { AP_Notify::events.arming_failed = true; in_arm_motors = false; return false; } // let logger know that we're armed (it may open logs e.g.) AP::logger().set_vehicle_armed(true); // disable cpu failsafe because initialising everything takes a while copter.failsafe_disable(); // notify that arming will occur (we do this early to give plenty of warning) AP_Notify::flags.armed = true; // call notify update a few times to ensure the message gets out for (uint8_t i=0; i<=10; i++) { AP::notify().update(); } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Arming motors"); #endif // Remember Orientation // -------------------- copter.init_simple_bearing(); auto &ahrs = AP::ahrs(); copter.initial_armed_bearing = ahrs.yaw_sensor; if (!ahrs.home_is_set()) { // Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) ahrs.resetHeightDatum(); AP::logger().Write_Event(LogEvent::EKF_ALT_RESET); // we have reset height, so arming height is zero copter.arming_altitude_m = 0; } else if (!ahrs.home_is_locked()) { // Reset home position if it has already been set before (but not locked) if (!copter.set_home_to_current_location(false)) { // ignore failure } // remember the height when we armed copter.arming_altitude_m = copter.inertial_nav.get_position_z_up_cm() * 0.01; } copter.update_super_simple_bearing(false); // Reset SmartRTL return location. If activated, SmartRTL will ultimately try to land at this point #if MODE_SMARTRTL_ENABLED == ENABLED copter.g2.smart_rtl.set_home(copter.position_ok()); #endif hal.util->set_soft_armed(true); #if SPRAYER_ENABLED == ENABLED // turn off sprayer's test if on copter.sprayer.test_pump(false); #endif // enable output to motors copter.enable_motor_output(); // finally actually arm the motors copter.motors->armed(true); // log flight mode in case it was changed while vehicle was disarmed AP::logger().Write_Mode((uint8_t)copter.flightmode->mode_number(), copter.control_mode_reason); // re-enable failsafe copter.failsafe_enable(); // perf monitor ignores delay due to arming AP::scheduler().perf_info.ignore_this_loop(); // flag exiting this function in_arm_motors = false; // Log time stamp of arming event copter.arm_time_ms = millis(); // Start the arming delay copter.ap.in_arming_delay = true; // assumed armed without a arming, switch. Overridden in switches.cpp copter.ap.armed_with_airmode_switch = false; // return success return true; } // arming.disarm - disarm motors bool AP_Arming_Copter::disarm(const AP_Arming::Method method, bool do_disarm_checks) { // return immediately if we are already disarmed if (!copter.motors->armed()) { return true; } // do not allow disarm via mavlink if we think we are flying: if (do_disarm_checks && method == AP_Arming::Method::MAVLINK && !copter.ap.land_complete) { return false; } if (!AP_Arming::disarm(method, do_disarm_checks)) { return false; } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors"); #endif auto &ahrs = AP::ahrs(); // save compass offsets learned by the EKF if enabled Compass &compass = AP::compass(); if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) { for(uint8_t i=0; iarmed(false); #if MODE_AUTO_ENABLED == ENABLED // reset the mission copter.mode_auto.mission.reset(); #endif AP::logger().set_vehicle_armed(false); hal.util->set_soft_armed(false); copter.ap.in_arming_delay = false; return true; }