/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /********************************************************************************/ // Command Event Handlers /********************************************************************************/ static void handle_process_nav_cmd() { // set land_complete to false to stop us zeroing the throttle land_complete = false; // set takeoff_complete to true so we don't add extra evevator // except in a takeoff takeoff_complete = true; gcs_send_text_fmt(PSTR("Executing nav command ID #%i"),next_nav_command.id); switch(next_nav_command.id) { case MAV_CMD_NAV_TAKEOFF: do_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint do_nav_wp(); break; case MAV_CMD_NAV_LAND: // LAND to Waypoint do_land(); break; case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely do_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times do_loiter_turns(); break; case MAV_CMD_NAV_LOITER_TIME: do_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: do_RTL(); break; default: break; } } static void handle_process_condition_command() { gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nonnav_command.id); switch(next_nonnav_command.id) { case MAV_CMD_CONDITION_DELAY: do_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: do_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: do_change_alt(); break; default: break; } } static void handle_process_do_command() { gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nonnav_command.id); switch(next_nonnav_command.id) { case MAV_CMD_DO_JUMP: do_jump(); break; case MAV_CMD_DO_CHANGE_SPEED: do_change_speed(); break; case MAV_CMD_DO_SET_HOME: do_set_home(); break; case MAV_CMD_DO_SET_SERVO: do_set_servo(); break; case MAV_CMD_DO_SET_RELAY: do_set_relay(); break; case MAV_CMD_DO_REPEAT_SERVO: do_repeat_servo(next_nonnav_command.p1, next_nonnav_command.alt, next_nonnav_command.lat, next_nonnav_command.lng); break; case MAV_CMD_DO_REPEAT_RELAY: do_repeat_relay(); break; #if CAMERA == ENABLED case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| break; case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| break; case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| do_take_picture(); break; #endif #if MOUNT == ENABLED // Sets the region of interest (ROI) for a sensor set or the // vehicle itself. This can then be used by the vehicles control // system to control the vehicle attitude and the attitude of various // devices such as cameras. // |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| case MAV_CMD_NAV_ROI: #if 0 // send the command to the camera mount camera_mount.set_roi_cmd(&command_nav_queue); #else gcs_send_text_P(SEVERITY_LOW, PSTR("DO_SET_ROI not supported")); #endif break; case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty| camera_mount.configure_cmd(); break; case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty| camera_mount.control_cmd(); break; #endif } } static void handle_no_commands() { gcs_send_text_fmt(PSTR("Returning to Home")); next_nav_command = home; next_nav_command.alt = read_alt_to_hold(); next_nav_command.id = MAV_CMD_NAV_LOITER_UNLIM; nav_command_ID = MAV_CMD_NAV_LOITER_UNLIM; non_nav_command_ID = WAIT_COMMAND; handle_process_nav_cmd(); } /******************************************************************************* Verify command Handlers Each type of mission element has a "verify" operation. The verify operation returns true when the mission element has completed and we should move onto the next mission element. *******************************************************************************/ static bool verify_nav_command() // Returns true if command complete { switch(nav_command_ID) { case MAV_CMD_NAV_TAKEOFF: return verify_takeoff(); case MAV_CMD_NAV_LAND: return verify_land(); case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(); case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlim(); case MAV_CMD_NAV_LOITER_TURNS: return verify_loiter_turns(); case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(); case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); default: gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_nav: Invalid or no current Nav cmd")); } return false; } static bool verify_condition_command() // Returns true if command complete { switch(non_nav_command_ID) { case NO_COMMAND: break; case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: return verify_change_alt(); break; case WAIT_COMMAND: return 0; break; default: gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_conditon: Invalid or no current Condition cmd")); break; } return false; } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ static void do_RTL(void) { control_mode = RTL; prev_WP = current_loc; next_WP = home; if (g.loiter_radius < 0) { loiter.direction = -1; } else { loiter.direction = 1; } // Altitude to hold over home // Set by configuration tool // ------------------------- next_WP.alt = read_alt_to_hold(); setup_glide_slope(); if (g.log_bitmask & MASK_LOG_MODE) Log_Write_Mode(control_mode); } static void do_takeoff() { set_next_WP(&next_nav_command); // pitch in deg, airspeed m/s, throttle %, track WP 1 or 0 takeoff_pitch_cd = (int)next_nav_command.p1 * 100; takeoff_altitude_cm = next_nav_command.alt; next_WP.lat = home.lat + 1000; // so we don't have bad calcs next_WP.lng = home.lng + 1000; // so we don't have bad calcs takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction // Flag also used to override "on the ground" throttle disable } static void do_nav_wp() { set_next_WP(&next_nav_command); } static void do_land() { set_next_WP(&next_nav_command); } static void loiter_set_direction_wp(const struct Location *nav_command) { if (nav_command->options & MASK_OPTIONS_LOITER_DIRECTION) { loiter.direction = -1; } else { loiter.direction = 1; } } static void do_loiter_unlimited() { set_next_WP(&next_nav_command); loiter_set_direction_wp(&next_nav_command); } static void do_loiter_turns() { set_next_WP(&next_nav_command); loiter.total_cd = next_nav_command.p1 * 36000UL; loiter_set_direction_wp(&next_nav_command); } static void do_loiter_time() { set_next_WP(&next_nav_command); // we set start_time_ms when we reach the waypoint loiter.start_time_ms = 0; loiter.time_max_ms = next_nav_command.p1 * (uint32_t)1000; // units are seconds loiter_set_direction_wp(&next_nav_command); } /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ static bool verify_takeoff() { if (ahrs.yaw_initialised()) { if (hold_course_cd == -1) { // save our current course to take off hold_course_cd = ahrs.yaw_sensor; gcs_send_text_fmt(PSTR("Holding course %ld"), hold_course_cd); } } if (hold_course_cd != -1) { // call navigation controller for heading hold nav_controller->update_heading_hold(hold_course_cd); } else { nav_controller->update_level_flight(); } // see if we have reached takeoff altitude if (adjusted_altitude_cm() > takeoff_altitude_cm) { hold_course_cd = -1; takeoff_complete = true; next_WP = prev_WP = current_loc; return true; } else { return false; } } // we are executing a landing static bool verify_land() { // we don't 'verify' landing in the sense that it never completes, // so we don't verify command completion. Instead we use this to // adjust final landing parameters // Set land_complete if we are within 2 seconds distance or within // 3 meters altitude of the landing point if ((wp_distance <= (g.land_flare_sec*g_gps->ground_speed_cm*0.01f)) || (adjusted_altitude_cm() <= next_WP.alt + g.land_flare_alt*100)) { land_complete = true; if (hold_course_cd == -1) { // we have just reached the threshold of to flare for landing. // We now don't want to do any radical // turns, as rolling could put the wings into the runway. // To prevent further turns we set hold_course_cd to the // current heading. Previously we set this to // crosstrack_bearing, but the xtrack bearing can easily // be quite large at this point, and that could induce a // sudden large roll correction which is very nasty at // this point in the landing. hold_course_cd = ahrs.yaw_sensor; gcs_send_text_fmt(PSTR("Land Complete - Hold course %ld"), hold_course_cd); } if (g_gps->ground_speed_cm*0.01f < 3.0) { // reload any airspeed or groundspeed parameters that may have // been set for landing. We don't do this till ground // speed drops below 3.0 m/s as otherwise we will change // target speeds too early. g.airspeed_cruise_cm.load(); g.min_gndspeed_cm.load(); aparm.throttle_cruise.load(); } } if (hold_course_cd != -1) { // recalc bearing error with hold_course; nav_controller->update_heading_hold(hold_course_cd); } else { nav_controller->update_waypoint(prev_WP, next_WP); } return false; } static bool verify_nav_wp() { hold_course_cd = -1; nav_controller->update_waypoint(prev_WP, next_WP); if (wp_distance <= nav_controller->turn_distance(g.waypoint_radius)) { gcs_send_text_fmt(PSTR("Reached Waypoint #%i dist %um"), (unsigned)nav_command_index, (unsigned)get_distance(current_loc, next_WP)); return true; } // have we flown past the waypoint? if (location_passed_point(current_loc, prev_WP, next_WP)) { gcs_send_text_fmt(PSTR("Passed Waypoint #%i dist %um"), (unsigned)nav_command_index, (unsigned)get_distance(current_loc, next_WP)); return true; } return false; } static bool verify_loiter_unlim() { update_loiter(); return false; } static bool verify_loiter_time() { update_loiter(); if (loiter.start_time_ms == 0) { if (nav_controller->reached_loiter_target()) { // we've reached the target, start the timer loiter.start_time_ms = millis(); } } else if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) { gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER time complete")); return true; } return false; } static bool verify_loiter_turns() { update_loiter(); if (loiter.sum_cd > loiter.total_cd) { loiter.total_cd = 0; gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER orbits complete")); // clear the command queue; return true; } return false; } static bool verify_RTL() { update_loiter(); if (wp_distance <= (uint32_t)max(g.waypoint_radius,0) || nav_controller->reached_loiter_target()) { gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home")); return true; } else { return false; } } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ static void do_wait_delay() { condition_start = millis(); condition_value = next_nonnav_command.lat * 1000; // convert to milliseconds } static void do_change_alt() { condition_rate = labs((int)next_nonnav_command.lat); condition_value = next_nonnav_command.alt; if (condition_value < adjusted_altitude_cm()) { condition_rate = -condition_rate; } target_altitude_cm = adjusted_altitude_cm() + (condition_rate / 10); // Divide by ten for 10Hz update next_WP.alt = condition_value; // For future nav calculations offset_altitude_cm = 0; // For future nav calculations } static void do_within_distance() { condition_value = next_nonnav_command.lat; } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ static bool verify_wait_delay() { if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) { condition_value = 0; return true; } return false; } static bool verify_change_alt() { if( (condition_rate>=0 && adjusted_altitude_cm() >= condition_value) || (condition_rate<=0 && adjusted_altitude_cm() <= condition_value)) { condition_value = 0; return true; } target_altitude_cm += condition_rate / 10; return false; } static bool verify_within_distance() { if (wp_distance < max(condition_value,0)) { condition_value = 0; return true; } return false; } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ static void do_loiter_at_location() { if (g.loiter_radius < 0) { loiter.direction = -1; } else { loiter.direction = 1; } next_WP = current_loc; } static void do_jump() { if (next_nonnav_command.lat == 0) { // the jump counter has reached zero - ignore gcs_send_text_fmt(PSTR("Jumps left: 0 - skipping")); return; } if (next_nonnav_command.p1 >= g.command_total) { gcs_send_text_fmt(PSTR("Skipping invalid jump to %i"), next_nonnav_command.p1); return; } struct Location temp; temp = get_cmd_with_index(g.command_index); gcs_send_text_fmt(PSTR("Jump to WP %u. Jumps left: %d"), (unsigned)next_nonnav_command.p1, (int)next_nonnav_command.lat); if (next_nonnav_command.lat > 0) { // Decrement repeat counter temp.lat = next_nonnav_command.lat - 1; set_cmd_with_index(temp, g.command_index); } nav_command_ID = NO_COMMAND; next_nav_command.id = NO_COMMAND; non_nav_command_ID = NO_COMMAND; gcs_send_text_fmt(PSTR("setting command index: %i"), next_nonnav_command.p1); g.command_index.set_and_save(next_nonnav_command.p1); nav_command_index = next_nonnav_command.p1; // Need to back "next_WP" up as it was set to the next waypoint following the jump next_WP = prev_WP; temp = get_cmd_with_index(g.command_index); next_nav_command = temp; nav_command_ID = next_nav_command.id; non_nav_command_index = g.command_index; non_nav_command_ID = WAIT_COMMAND; if (g.log_bitmask & MASK_LOG_CMD) { Log_Write_Cmd(g.command_index, &next_nav_command); } handle_process_nav_cmd(); } static void do_change_speed() { switch (next_nonnav_command.p1) { case 0: // Airspeed if (next_nonnav_command.alt > 0) { g.airspeed_cruise_cm.set(next_nonnav_command.alt * 100); gcs_send_text_fmt(PSTR("Set airspeed %u m/s"), (unsigned)next_nonnav_command.alt); } break; case 1: // Ground speed gcs_send_text_fmt(PSTR("Set groundspeed %u"), (unsigned)next_nonnav_command.alt); g.min_gndspeed_cm.set(next_nonnav_command.alt * 100); break; } if (next_nonnav_command.lat > 0) { gcs_send_text_fmt(PSTR("Set throttle %u"), (unsigned)next_nonnav_command.lat); aparm.throttle_cruise.set(next_nonnav_command.lat); } } static void do_set_home() { if (next_nonnav_command.p1 == 1 && g_gps->status() == GPS::GPS_OK_FIX_3D) { init_home(); } else { home.id = MAV_CMD_NAV_WAYPOINT; home.lng = next_nonnav_command.lng; // Lon * 10**7 home.lat = next_nonnav_command.lat; // Lat * 10**7 home.alt = max(next_nonnav_command.alt, 0); home_is_set = true; } } static void do_set_servo() { servo_write(next_nonnav_command.p1 - 1, next_nonnav_command.alt); } static void do_set_relay() { if (next_nonnav_command.p1 == 1) { gcs_send_text_fmt(PSTR("Relay on")); relay.on(); } else if (next_nonnav_command.p1 == 0) { gcs_send_text_fmt(PSTR("Relay off")); relay.off(); }else{ gcs_send_text_fmt(PSTR("Relay toggle")); relay.toggle(); } } static void do_repeat_servo(uint8_t channel, uint16_t servo_value, int16_t repeat, uint8_t delay_time) { channel = channel - 1; if (channel < 5 || channel > 8) { // not allowed return; } event_state.rc_channel = channel; event_state.type = EVENT_TYPE_SERVO; event_state.start_time_ms = 0; event_state.delay_ms = delay_time * 500UL; event_state.repeat = repeat * 2; event_state.servo_value = servo_value; event_state.undo_value = RC_Channel::rc_channel(channel)->radio_trim; update_events(); } static void do_repeat_relay() { event_state.type = EVENT_TYPE_RELAY; event_state.start_time_ms = 0; // /2 (half cycle time) * 1000 (convert to milliseconds) event_state.delay_ms = next_nonnav_command.lat * 500.0; event_state.repeat = next_nonnav_command.alt * 2; update_events(); } // do_take_picture - take a picture with the camera library static void do_take_picture() { #if CAMERA == ENABLED camera.trigger_pic(); if (g.log_bitmask & MASK_LOG_CAMERA) { Log_Write_Camera(); } #endif }