// -*- tab-width: 4; Mode: C++; c-basic-offset: 3; indent-tabs-mode: t -*- /* AP_RangeFinder.cpp - Arduino Library for Sharpe GP2Y0A02YK0F infrared proximity sensor Code by Jose Julio and Randy Mackay. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This has the basic functions that all RangeFinders need implemented */ // AVR LibC Includes #include "WConstants.h" #include "RangeFinder.h" // Constructor ///////////////////////////////////////////////////////////////// RangeFinder::RangeFinder() : _ap_adc(NULL), _num_averages(AP_RANGEFINDER_NUM_AVERAGES), _history_ptr(0) { } // Public Methods ////////////////////////////////////////////////////////////// void RangeFinder::init(int analogPort, AP_ADC *ap_adc) { // local variables int i; // store the analog port to be used _analogPort = analogPort; // set the given analog port to an input if( analogPort != AP_RANGEFINDER_PITOT_TUBE ){ pinMode(analogPort, INPUT); }else{ _num_averages = 0; // turn off averaging for pitot tube because AP_ADC does this for us } // capture the AP_ADC object if passed in if( ap_adc != NULL ) _ap_adc = ap_adc; // make first call to read to get initial distance read(); // initialise history for(i = 0; i < AP_RANGEFINDER_NUM_AVERAGES; i++) _history[i] = distance; } void RangeFinder::set_orientation(int x, int y, int z) { orientation_x = x; orientation_y = y; orientation_z = z; } // Read Sensor data - only the raw_value is filled in by this parent class int RangeFinder::read() { // local variables int temp_dist; int total = 0; // read from the analog port or pitot tube if( _analogPort == AP_RANGEFINDER_PITOT_TUBE ) { if( _ap_adc != NULL ){ raw_value = _ap_adc->Ch(AP_RANGEFINDER_PITOT_TUBE_ADC_CHANNEL) >> 2; // values from ADC are twice as big as you'd expect }else{ raw_value = 0; } }else{ // read raw sensor value and convert to distance raw_value = analogRead(_analogPort); } // convert analog value to distance in cm (using child implementation most likely) raw_value = convert_raw_to_distance(raw_value); // ensure distance is within min and max raw_value = constrain(raw_value, min_distance, max_distance); //distance = raw_value; // slew rate if(raw_value > distance){ temp_dist = min(distance + 20, raw_value); }else{ temp_dist = max(distance - 20, raw_value); } if(_num_averages > 0){ // filter the results // ------------------ // add to filter _history[_history_ptr] = temp_dist; // increment our filter _history_ptr++; // loop our filter if(_history_ptr == AP_RANGEFINDER_NUM_AVERAGES) _history_ptr = 0; // sum our filter for(uint8_t i = 0; i < AP_RANGEFINDER_NUM_AVERAGES; i++){ total += _history[i]; } // average our sampels distance = total / AP_RANGEFINDER_NUM_AVERAGES; }else{ distance = temp_dist; } // return distance return distance; }