#include "Rover.h" void ModeAcro::update() { // get speed forward float speed, desired_steering; if (!attitude_control.get_forward_speed(speed)) { float desired_throttle; // convert pilot stick input into desired steering and throttle get_pilot_desired_steering_and_throttle(desired_steering, desired_throttle); // if vehicle is balance bot, calculate actual throttle required for balancing if (rover.is_balancebot()) { rover.balancebot_pitch_control(desired_throttle); } // no valid speed, just use the provided throttle g2.motors.set_throttle(desired_throttle); } else { float desired_speed; // convert pilot stick input into desired steering and speed get_pilot_desired_steering_and_speed(desired_steering, desired_speed); calc_throttle(desired_speed, true); } float steering_out; // handle sailboats if (!is_zero(desired_steering)) { // steering input return control to user g2.sailboat.clear_tack(); } if (g2.sailboat.tacking()) { // call heading controller during tacking steering_out = attitude_control.get_steering_out_heading(g2.sailboat.get_tack_heading_rad(), g2.wp_nav.get_pivot_rate(), g2.motors.limit.steer_left, g2.motors.limit.steer_right, rover.G_Dt); } else { // convert pilot steering input to desired turn rate in radians/sec const float target_turn_rate = (desired_steering / 4500.0f) * radians(g2.acro_turn_rate); // run steering turn rate controller and throttle controller steering_out = attitude_control.get_steering_out_rate(target_turn_rate, g2.motors.limit.steer_left, g2.motors.limit.steer_right, rover.G_Dt); } set_steering(steering_out * 4500.0f); } bool ModeAcro::requires_velocity() const { return !g2.motors.have_skid_steering(); } // sailboats in acro mode support user manually initiating tacking from transmitter void ModeAcro::handle_tack_request() { g2.sailboat.handle_tack_request_acro(); }