#include "Tracker.h" /* * Auto control mode */ /* * update_auto - runs the auto controller * called at 50hz while control_mode is 'AUTO' */ void Tracker::update_auto(void) { // exit immediately if we do not have a valid vehicle position if (!vehicle.location_valid) { return; } float yaw = wrap_180_cd((nav_status.bearing+g.yaw_trim)*100); // target yaw in centidegrees float pitch = constrain_float(nav_status.pitch+g.pitch_trim, g.pitch_min, g.pitch_max) * 100; // target pitch in centidegrees bool direction_reversed = get_ef_yaw_direction(); calc_angle_error(pitch, yaw, direction_reversed); float bf_pitch; float bf_yaw; convert_ef_to_bf(pitch, yaw, bf_pitch, bf_yaw); // only move servos if target is at least distance_min away if ((g.distance_min <= 0) || (nav_status.distance >= g.distance_min)) { update_pitch_servo(bf_pitch); update_yaw_servo(bf_yaw); } } void Tracker::calc_angle_error(float pitch, float yaw, bool direction_reversed) { // Pitch angle error in centidegrees // Positive error means the target is above current pitch // Negative error means the target is below current pitch float ahrs_pitch = ahrs.pitch_sensor; int32_t ef_pitch_angle_error = pitch - ahrs_pitch; // Yaw angle error in centidegrees // Positive error means the target is right of current yaw // Negative error means the target is left of current yaw int32_t ahrs_yaw_cd = wrap_180_cd(ahrs.yaw_sensor); int32_t ef_yaw_angle_error = wrap_180_cd(yaw - ahrs_yaw_cd); if (direction_reversed) { if (ef_yaw_angle_error > 0) { ef_yaw_angle_error = (yaw - ahrs_yaw_cd) - 36000; } else { ef_yaw_angle_error = 36000 + (yaw - ahrs_yaw_cd); } } // earth frame to body frame angle error conversion float bf_pitch_err; float bf_yaw_err; convert_ef_to_bf(ef_pitch_angle_error, ef_yaw_angle_error, bf_pitch_err, bf_yaw_err); nav_status.angle_error_pitch = bf_pitch_err; nav_status.angle_error_yaw = bf_yaw_err; // set actual and desired for logging, note we are using angles not rates g.pidPitch2Srv.set_desired_rate(pitch * 0.01); g.pidPitch2Srv.set_actual_rate(ahrs_pitch * 0.01); g.pidYaw2Srv.set_desired_rate(yaw * 0.01); g.pidYaw2Srv.set_actual_rate(ahrs_yaw_cd * 0.01); } void Tracker::convert_ef_to_bf(float pitch, float yaw, float& bf_pitch, float& bf_yaw) { // earth frame to body frame pitch and yaw conversion bf_pitch = ahrs.cos_roll() * pitch + ahrs.sin_roll() * ahrs.cos_pitch() * yaw; bf_yaw = -ahrs.sin_roll() * pitch + ahrs.cos_pitch() * ahrs.cos_roll() * yaw; } bool Tracker::convert_bf_to_ef(float pitch, float yaw, float& ef_pitch, float& ef_yaw) { // avoid divide by zero if (is_zero(ahrs.cos_pitch())) { return false; } // convert earth frame angle or rates to body frame ef_pitch = ahrs.cos_roll() * pitch - ahrs.sin_roll() * yaw; ef_yaw = (ahrs.sin_roll() / ahrs.cos_pitch()) * pitch + (ahrs.cos_roll() / ahrs.cos_pitch()) * yaw; return true; } // return value is true if taking the long road to the target, false if normal, shortest direction should be used bool Tracker::get_ef_yaw_direction() { // calculating distances from current pitch/yaw to lower and upper limits in centi-degrees float yaw_angle_limit_lower = (-g.yaw_range * 100.0f / 2.0f) - yaw_servo_out_filt.get(); float yaw_angle_limit_upper = (g.yaw_range * 100.0f / 2.0f) - yaw_servo_out_filt.get(); float pitch_angle_limit_lower = (g.pitch_min * 100.0f) - pitch_servo_out_filt.get(); float pitch_angle_limit_upper = (g.pitch_max * 100.0f) - pitch_servo_out_filt.get(); // distances to earthframe angle limits in centi-degrees float ef_yaw_limit_lower = yaw_angle_limit_lower; float ef_yaw_limit_upper = yaw_angle_limit_upper; float ef_pitch_limit_lower = pitch_angle_limit_lower; float ef_pitch_limit_upper = pitch_angle_limit_upper; convert_bf_to_ef(pitch_angle_limit_lower, yaw_angle_limit_lower, ef_pitch_limit_lower, ef_yaw_limit_lower); convert_bf_to_ef(pitch_angle_limit_upper, yaw_angle_limit_upper, ef_pitch_limit_upper, ef_yaw_limit_upper); float ef_yaw_current = wrap_180_cd(ahrs.yaw_sensor); float ef_yaw_target = wrap_180_cd((nav_status.bearing+g.yaw_trim)*100); float ef_yaw_angle_error = wrap_180_cd(ef_yaw_target - ef_yaw_current); // calculate angle error to target in both directions (i.e. moving up/right or lower/left) float yaw_angle_error_upper; float yaw_angle_error_lower; if (ef_yaw_angle_error >= 0) { yaw_angle_error_upper = ef_yaw_angle_error; yaw_angle_error_lower = ef_yaw_angle_error - 36000; } else { yaw_angle_error_upper = 36000 + ef_yaw_angle_error; yaw_angle_error_lower = ef_yaw_angle_error; } // checks that the vehicle is outside the tracker's range if ((yaw_angle_error_lower < ef_yaw_limit_lower) && (yaw_angle_error_upper > ef_yaw_limit_upper)) { // if the tracker is trying to move clockwise to reach the vehicle, // but the tracker could get closer to the vehicle by moving counter-clockwise then set direction_reversed to true if (ef_yaw_angle_error>0 && ((ef_yaw_limit_lower - yaw_angle_error_lower) < (yaw_angle_error_upper - ef_yaw_limit_upper))) { return true; } // if the tracker is trying to move counter-clockwise to reach the vehicle, // but the tracker could get closer to the vehicle by moving then set direction_reversed to true if (ef_yaw_angle_error<0 && ((ef_yaw_limit_lower - yaw_angle_error_lower) > (yaw_angle_error_upper - ef_yaw_limit_upper))) { return true; } } // if we get this far we can use the regular, shortest path to the target return false; }