// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* allow for runtime change of control channel ordering */ static void set_control_channels(void) { channel_steer = RC_Channel::rc_channel(rcmap.roll()-1); channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1); channel_learn = RC_Channel::rc_channel(g.learn_channel-1); // set rc channel ranges channel_steer->set_angle(SERVO_MAX); channel_throttle->set_angle(100); } static void init_rc_in() { // set rc dead zones channel_steer->set_default_dead_zone(30); channel_throttle->set_default_dead_zone(30); //set auxiliary ranges update_aux(); } static void init_rc_out() { for (uint8_t i=0; i<8; i++) { RC_Channel::rc_channel(i)->enable_out(); RC_Channel::rc_channel(i)->output_trim(); } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 servo_write(CH_9, g.rc_9.radio_trim); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4 servo_write(CH_10, g.rc_10.radio_trim); servo_write(CH_11, g.rc_11.radio_trim); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 servo_write(CH_12, g.rc_12.radio_trim); servo_write(CH_13, g.rc_13.radio_trim); servo_write(CH_14, g.rc_14.radio_trim); #endif } static void read_radio() { if (!hal.rcin->new_input()) { control_failsafe(channel_throttle->radio_in); return; } failsafe.last_valid_rc_ms = hal.scheduler->millis(); for (uint8_t i=0; i<8; i++) { RC_Channel::rc_channel(i)->set_pwm(RC_Channel::rc_channel(i)->read()); } control_failsafe(channel_throttle->radio_in); channel_throttle->servo_out = channel_throttle->control_in; if (abs(channel_throttle->servo_out) > 50) { throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((fabsf(channel_throttle->norm_input())-0.5) / 0.5); } else { throttle_nudge = 0; } if (g.skid_steer_in) { // convert the two radio_in values from skid steering values /* mixing rule: steering = motor1 - motor2 throttle = 0.5*(motor1 + motor2) motor1 = throttle + 0.5*steering motor2 = throttle - 0.5*steering */ float motor1 = channel_steer->norm_input(); float motor2 = channel_throttle->norm_input(); float steering_scaled = motor1 - motor2; float throttle_scaled = 0.5f*(motor1 + motor2); int16_t steer = channel_steer->radio_trim; int16_t thr = channel_throttle->radio_trim; if (steering_scaled > 0.0f) { steer += steering_scaled*(channel_steer->radio_max-channel_steer->radio_trim); } else { steer += steering_scaled*(channel_steer->radio_trim-channel_steer->radio_min); } if (throttle_scaled > 0.0f) { thr += throttle_scaled*(channel_throttle->radio_max-channel_throttle->radio_trim); } else { thr += throttle_scaled*(channel_throttle->radio_trim-channel_throttle->radio_min); } channel_steer->set_pwm(steer); channel_throttle->set_pwm(thr); } } static void control_failsafe(uint16_t pwm) { if (!g.fs_throttle_enabled) { // no throttle failsafe return; } // Check for failsafe condition based on loss of GCS control if (rc_override_active) { failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500); } else if (g.fs_throttle_enabled) { bool failed = pwm < (uint16_t)g.fs_throttle_value; if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 2000) { failed = true; } failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed); } } static void trim_control_surfaces() { read_radio(); // Store control surface trim values // --------------------------------- if (channel_steer->radio_in > 1400) { channel_steer->radio_trim = channel_steer->radio_in; // save to eeprom channel_steer->save_eeprom(); } } static void trim_radio() { for (int y = 0; y < 30; y++) { read_radio(); } trim_control_surfaces(); }