/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega * Code by Jordi Mu�oz and Jose Julio. DIYDrones.com * * Modified by John Ihlein 6 / 19 / 2010 to: * 1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably * only an issue on initial read of ADC at program start. * 2)Reorder analog read order as follows: * p, q, r, ax, ay, az * * This library is free software; you can redistribute it and / or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * External ADC ADS7844 is connected via Serial port 2 (in SPI mode) * TXD2 = MOSI = pin PH1 * RXD2 = MISO = pin PH0 * XCK2 = SCK = pin PH2 * Chip Select pin is PC4 (33) [PH6 (9)] * We are using the 16 clocks per conversion timming to increase efficiency (fast) * * The sampling frequency is 1kHz (Timer2 overflow interrupt) * * So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so * we have an 10x oversampling and averaging. * * Methods: * Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt) * Ch(ch_num) : Return the ADC channel value * * // HJI - Input definitions. USB connector assumed to be on the left, Rx and servo * // connector pins to the rear. IMU shield components facing up. These are board * // referenced sensor inputs, not device referenced. * On Ardupilot Mega Hardware, oriented as described above: * Chennel 0 : yaw rate, r * Channel 1 : roll rate, p * Channel 2 : pitch rate, q * Channel 3 : x / y gyro temperature * Channel 4 : x acceleration, aX * Channel 5 : y acceleration, aY * Channel 6 : z acceleration, aZ * Channel 7 : Differential pressure sensor port * */ #include "AP_ADC_ADS7844.h" extern "C" { // AVR LibC Includes #include #include #include } #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WConstants.h" #endif // Commands for reading ADC channels on ADS7844 static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 }; // the sum of the values since last read static volatile uint32_t _sum[8]; // how many values we've accumulated since last read static volatile uint16_t _count[8]; // variables to calculate time period over which a group of samples were collected static volatile uint32_t _ch6_delta_time_start_micros = 0; // time we start collecting sample (reset on update) static volatile uint32_t _ch6_last_sample_time_micros = 0; // time latest sample was collected // TCNT2 values for various interrupt rates, // assuming 256 prescaler. Note that these values // assume a zero-time ISR. The actual rate will be a // bit lower than this #define TCNT2_781_HZ (256-80) #define TCNT2_1008_HZ (256-62) #define TCNT2_1302_HZ (256-48) static inline unsigned char ADC_SPI_transfer(unsigned char data) { /* Put data into buffer, sends the data */ UDR2 = data; /* Wait for data to be received */ while ( !(UCSR2A & (1 << RXC2)) ) ; /* Get and return received data from buffer */ return UDR2; } void AP_ADC_ADS7844::read(uint32_t tnow) { uint8_t ch; bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4) ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel for (ch = 0; ch < 8; ch++) { uint16_t v; v = ADC_SPI_transfer(0) << 8; // Read first byte v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command if (v & 0x8007) { // this is a 12-bit ADC, shifted by 3 bits. // if we get other bits set then the value is // bogus and should be ignored continue; } if (++_count[ch] == 0) { // overflow ... shouldn't happen too often // unless we're just not using the // channel. Notice that we overflow the count // to 1 here, not zero, as otherwise the // reader below could get a division by zero _sum[ch] = 0; _count[ch] = 1; } _sum[ch] += (v >> 3); } bit_set(PORTC, 4); // Disable Chip Select (PIN PC4) // record time of this sample _ch6_last_sample_time_micros = micros(); } // Constructors //////////////////////////////////////////////////////////////// AP_ADC_ADS7844::AP_ADC_ADS7844() { } // Public Methods ////////////////////////////////////////////////////////////// void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler ) { scheduler->suspend_timer(); pinMode(ADC_CHIP_SELECT, OUTPUT); digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low) // Setup Serial Port2 in SPI mode UBRR2 = 0; DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode // Set MSPI mode of operation and SPI data mode 0. UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2); // Enable receiver and transmitter. UCSR2B = (1 << RXEN2) | (1 << TXEN2); // Set Baud rate UBRR2 = 2; // SPI clock running at 2.6MHz // get an initial value for each channel. This ensures // _count[] is never zero for (uint8_t i=0; i<8; i++) { uint16_t adc_tmp; adc_tmp = ADC_SPI_transfer(0) << 8; adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]); _count[i] = 1; _sum[i] = adc_tmp; } _ch6_last_sample_time_micros = micros(); scheduler->resume_timer(); scheduler->register_process( AP_ADC_ADS7844::read ); } // Read one channel value float AP_ADC_ADS7844::Ch(uint8_t ch_num) { uint16_t count; uint32_t sum; // ensure we have at least one value while (_count[ch_num] == 0) /* noop */; // grab the value with interrupts disabled, and clear the count cli(); count = _count[ch_num]; sum = _sum[ch_num]; _count[ch_num] = 0; _sum[ch_num] = 0; sei(); return ((float)sum)/count; } // see if Ch6() can return new data bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers) { uint8_t i; for (i=0; i<6; i++) { if (_count[channel_numbers[i]] == 0) { return false; } } return true; } // Read 6 channel values // this assumes that the counts for all of the 6 channels are // equal. This will only be true if we always consistently access a // sensor by either Ch6() or Ch() and never mix them. If you mix them // then you will get very strange results uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, float *result) { uint16_t count[6]; uint32_t sum[6]; uint8_t i; // ensure we have at least one value for (i=0; i<6; i++) { while (_count[channel_numbers[i]] == 0) /* noop */; } // grab the values with interrupts disabled, and clear the counts cli(); for (i=0; i<6; i++) { count[i] = _count[channel_numbers[i]]; sum[i] = _sum[channel_numbers[i]]; _count[channel_numbers[i]] = 0; _sum[channel_numbers[i]] = 0; } // calculate the delta time. // we do this before re-enabling interrupts because another sensor read could fire immediately and change the _last_sensor_time value uint32_t ret = _ch6_last_sample_time_micros - _ch6_delta_time_start_micros; _ch6_delta_time_start_micros = _ch6_last_sample_time_micros; sei(); // calculate averages. We keep this out of the cli region // to prevent us stalling the ISR while doing the // division. That costs us 36 bytes of stack, but I think its // worth it. for (i = 0; i < 6; i++) { result[i] = sum[i] / (float)count[i]; } // return number of microseconds since last call return ret; }