/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // local variables float roll_in_filtered; // roll-in in filtered with RC_FEEL_RP parameter float pitch_in_filtered; // pitch-in filtered with RC_FEEL_RP parameter static void reset_roll_pitch_in_filters(int16_t roll_in, int16_t pitch_in) { roll_in_filtered = constrain_int16(roll_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); pitch_in_filtered = constrain_int16(pitch_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); } // get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle // returns desired angle in centi-degrees static void get_pilot_desired_lean_angles(int16_t roll_in, int16_t pitch_in, int16_t &roll_out, int16_t &pitch_out) { static float _scaler = 1.0; static int16_t _angle_max = 0; // range check the input roll_in = constrain_int16(roll_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); pitch_in = constrain_int16(pitch_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); // filter input for feel if (g.rc_feel_rp >= RC_FEEL_RP_VERY_CRISP) { // no filtering required roll_in_filtered = roll_in; pitch_in_filtered = pitch_in; }else{ float filter_gain; if (g.rc_feel_rp >= RC_FEEL_RP_CRISP) { filter_gain = 0.5; } else if(g.rc_feel_rp >= RC_FEEL_RP_MEDIUM) { filter_gain = 0.3; } else if(g.rc_feel_rp >= RC_FEEL_RP_SOFT) { filter_gain = 0.05; } else { // must be RC_FEEL_RP_VERY_SOFT filter_gain = 0.02; } roll_in_filtered = roll_in_filtered * (1.0 - filter_gain) + (float)roll_in * filter_gain; pitch_in_filtered = pitch_in_filtered * (1.0 - filter_gain) + (float)pitch_in * filter_gain; } // return filtered roll if no scaling required if (aparm.angle_max == ROLL_PITCH_INPUT_MAX) { roll_out = (int16_t)roll_in_filtered; pitch_out = (int16_t)pitch_in_filtered; return; } // check if angle_max has been updated and redo scaler if (aparm.angle_max != _angle_max) { _angle_max = aparm.angle_max; _scaler = (float)aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX; } // convert pilot input to lean angle roll_out = (int16_t)(roll_in_filtered * _scaler); pitch_out = (int16_t)(pitch_in_filtered * _scaler); } // get_pilot_desired_heading - transform pilot's yaw input into a desired heading // returns desired angle in centi-degrees // To-Do: return heading as a float? static float get_pilot_desired_yaw_rate(int16_t stick_angle) { // convert pilot input to the desired yaw rate return stick_angle * g.acro_yaw_p; } /************************************************************* * yaw controllers *************************************************************/ // get_look_at_yaw - updates bearing to location held in look_at_yaw_WP and calls stabilize yaw controller // should be called at 100hz static float get_look_at_yaw() { static uint8_t look_at_yaw_counter = 0; // used to reduce update rate to 10hz look_at_yaw_counter++; if (look_at_yaw_counter >= 10) { look_at_yaw_counter = 0; yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP); } return yaw_look_at_WP_bearing; } static float get_look_ahead_yaw() { // Commanded Yaw to automatically look ahead. if (g_gps->fix && g_gps->ground_speed_cm > YAW_LOOK_AHEAD_MIN_SPEED) { yaw_look_ahead_bearing = g_gps->ground_course_cd; } return yaw_look_ahead_bearing; } /************************************************************* * throttle control ****************************************************************/ // update_thr_cruise - update throttle cruise if necessary // should be called at 100hz static void update_thr_cruise() { // ensure throttle_avg has been initialised if( throttle_avg == 0 ) { throttle_avg = g.throttle_cruise; // update position controller pos_control.set_throttle_hover(throttle_avg); } // if not armed or landed exit if (!motors.armed() || ap.land_complete) { return; } // get throttle output int16_t throttle = g.rc_3.servo_out; // calc average throttle if we are in a level hover if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { throttle_avg = throttle_avg * 0.99f + (float)throttle * 0.01f; g.throttle_cruise = throttle_avg; // update position controller pos_control.set_throttle_hover(throttle_avg); } } // set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared static void set_throttle_takeoff() { // tell position controller to reset alt target and reset I terms pos_control.init_takeoff(); // tell motors to do a slow start motors.slow_start(true); } // get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick // used only for manual throttle modes // returns throttle output 0 to 1000 #define THROTTLE_IN_MIDDLE 500 // the throttle mid point static int16_t get_pilot_desired_throttle(int16_t throttle_control) { int16_t throttle_out; // exit immediately in the simple cases if( throttle_control == 0 || g.throttle_mid == 500) { return throttle_control; } // ensure reasonable throttle values throttle_control = constrain_int16(throttle_control,0,1000); g.throttle_mid = constrain_int16(g.throttle_mid,300,700); // check throttle is above, below or in the deadband if (throttle_control < THROTTLE_IN_MIDDLE) { // below the deadband throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(g.throttle_mid - g.throttle_min))/((float)(500-g.throttle_min)); }else if(throttle_control > THROTTLE_IN_MIDDLE) { // above the deadband throttle_out = g.throttle_mid + ((float)(throttle_control-500))*(float)(1000-g.throttle_mid)/500.0f; }else{ // must be in the deadband throttle_out = g.throttle_mid; } return throttle_out; } // get_pilot_desired_climb_rate - transform pilot's throttle input to // climb rate in cm/s. we use radio_in instead of control_in to get the full range // without any deadzone at the bottom #define THROTTLE_IN_DEADBAND_TOP (THROTTLE_IN_MIDDLE+THROTTLE_IN_DEADBAND) // top of the deadband #define THROTTLE_IN_DEADBAND_BOTTOM (THROTTLE_IN_MIDDLE-THROTTLE_IN_DEADBAND) // bottom of the deadband static int16_t get_pilot_desired_climb_rate(int16_t throttle_control) { int16_t desired_rate = 0; // throttle failsafe check if( failsafe.radio ) { return 0; } // ensure a reasonable throttle value throttle_control = constrain_int16(throttle_control,0,1000); // check throttle is above, below or in the deadband if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) { // below the deadband desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else if (throttle_control > THROTTLE_IN_DEADBAND_TOP) { // above the deadband desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else{ // must be in the deadband desired_rate = 0; } // desired climb rate for logging desired_climb_rate = desired_rate; return desired_rate; } // get_throttle_surface_tracking - hold copter at the desired distance above the ground // returns climb rate (in cm/s) which should be passed to the position controller static float get_throttle_surface_tracking(int16_t target_rate, float current_alt_target, float dt) { static uint32_t last_call_ms = 0; float distance_error; float velocity_correction; uint32_t now = millis(); // reset target altitude if this controller has just been engaged if( now - last_call_ms > 200 ) { target_sonar_alt = sonar_alt + current_alt_target - current_loc.alt; } last_call_ms = now; // adjust sonar target alt if motors have not hit their limits if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) { target_sonar_alt += target_rate * dt; } // do not let target altitude get too far from current altitude above ground // Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-pos_control.get_leash_down_z(),sonar_alt+pos_control.get_leash_up_z()); // calc desired velocity correction from target sonar alt vs actual sonar alt distance_error = target_sonar_alt-sonar_alt; velocity_correction = distance_error * g.sonar_gain; velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX); // return combined pilot climb rate + rate to correct sonar alt error return (target_rate + velocity_correction); } // set_accel_throttle_I_from_pilot_throttle - smooths out transition from pilot controlled throttle to autopilot throttle static void set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle) { // shift difference between pilot's throttle and hover throttle into accelerometer I g.pid_throttle_accel.set_integrator(pilot_throttle-g.throttle_cruise); }