#pragma once #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #if defined(HAL_BUILD_AP_PERIPH) #include "SITL_Periph_State.h" #else #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "RCInput.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #include // #include #include #include #include #include #include #include class HAL_SITL; class HALSITL::SITL_State { friend class HALSITL::Scheduler; friend class HALSITL::Util; friend class HALSITL::GPIO; public: void init(int argc, char * const argv[]); enum vehicle_type { ArduCopter, Rover, ArduPlane, ArduSub, Blimp }; int gps_pipe(uint8_t index); ssize_t gps_read(int fd, void *buf, size_t count); uint16_t pwm_output[SITL_NUM_CHANNELS]; uint16_t pwm_input[SITL_RC_INPUT_CHANNELS]; bool output_ready = false; bool new_rc_input; void loop_hook(void); uint16_t base_port(void) const { return _base_port; } // create a file descriptor attached to a virtual device; type of // device is given by name parameter int sim_fd(const char *name, const char *arg); // returns a write file descriptor for a created virtual device int sim_fd_write(const char *name); bool use_rtscts(void) const { return _use_rtscts; } // simulated airspeed, sonar and battery monitor uint16_t sonar_pin_value; // pin 0 uint16_t airspeed_pin_value; // pin 1 uint16_t airspeed_2_pin_value; // pin 2 uint16_t voltage_pin_value; // pin 13 uint16_t current_pin_value; // pin 12 uint16_t voltage2_pin_value; // pin 15 uint16_t current2_pin_value; // pin 14 // paths for UART devices const char *_uart_path[9] { "tcp:0:wait", "GPS1", "tcp:2", "tcp:3", "GPS2", "tcp:5", "tcp:6", "tcp:7", "tcp:8", }; std::vector cmdline_param; /* parse a home location string */ static bool parse_home(const char *home_str, Location &loc, float &yaw_degrees); /* lookup a location in locations.txt */ static bool lookup_location(const char *home_str, Location &loc, float &yaw_degrees); uint8_t get_instance() const { return _instance; } private: void _parse_command_line(int argc, char * const argv[]); void _set_param_default(const char *parm); void _usage(void); void _sitl_setup(const char *home_str); void _setup_fdm(void); void _setup_timer(void); void _setup_adc(void); void set_height_agl(void); void _update_rangefinder(float range_value); void _set_signal_handlers(void) const; struct gps_data { double latitude; double longitude; float altitude; double speedN; double speedE; double speedD; double yaw; bool have_lock; }; #define MAX_GPS_DELAY 100 gps_data _gps_data[2][MAX_GPS_DELAY]; bool _gps_has_basestation_position; gps_data _gps_basestation_data; void _gps_write(const uint8_t *p, uint16_t size, uint8_t instance); void _gps_send_ubx(uint8_t msgid, uint8_t *buf, uint16_t size, uint8_t instance); void _update_gps_ubx(const struct gps_data *d, uint8_t instance); void _update_gps_mtk(const struct gps_data *d, uint8_t instance); void _update_gps_mtk16(const struct gps_data *d, uint8_t instance); void _update_gps_mtk19(const struct gps_data *d, uint8_t instance); uint8_t _gps_nmea_checksum(const char *s); void _gps_nmea_printf(uint8_t instance, const char *fmt, ...); void _update_gps_nmea(const struct gps_data *d, uint8_t instance); void _sbp_send_message(uint16_t msg_type, uint16_t sender_id, uint8_t len, uint8_t *payload, uint8_t instance); void _update_gps_sbp(const struct gps_data *d, uint8_t instance); void _update_gps_sbp2(const struct gps_data *d, uint8_t instance); void _update_gps_file(uint8_t instance); void _update_gps_nova(const struct gps_data *d, uint8_t instance); void _nova_send_message(uint8_t *header, uint8_t headerlength, uint8_t *payload, uint8_t payloadlen, uint8_t instance); uint32_t CRC32Value(uint32_t icrc); uint32_t CalculateBlockCRC32(uint32_t length, uint8_t *buffer, uint32_t crc); void _update_gps(double latitude, double longitude, float altitude, double speedN, double speedE, double speedD, double yaw, bool have_lock); void _update_airspeed(float airspeed); void _update_gps_instance(SITL::SITL::GPSType gps_type, const struct gps_data *d, uint8_t instance); void _check_rc_input(void); bool _read_rc_sitl_input(); void _fdm_input_local(void); void _output_to_flightgear(void); void _simulator_servos(struct sitl_input &input); void _fdm_input_step(void); void wait_clock(uint64_t wait_time_usec); // internal state enum vehicle_type _vehicle; uint16_t _framerate; uint8_t _instance; uint16_t _base_port; pid_t _parent_pid; uint32_t _update_count; AP_Baro *_barometer; AP_InertialSensor *_ins; Scheduler *_scheduler; Compass *_compass; SocketAPM _sitl_rc_in{true}; SITL::SITL *_sitl; uint16_t _rcin_port; uint16_t _fg_view_port; uint16_t _irlock_port; float _current; bool _synthetic_clock_mode; bool _use_rtscts; bool _use_fg_view; const char *_fg_address; // delay buffer variables static const uint8_t mag_buffer_length = 250; static const uint8_t wind_buffer_length = 50; // magnetometer delay buffer variables struct readings_mag { uint32_t time; Vector3f data; }; uint8_t store_index_mag; uint32_t last_store_time_mag; VectorN buffer_mag; uint32_t time_delta_mag; uint32_t delayed_time_mag; // airspeed sensor delay buffer variables struct readings_wind { uint32_t time; float data; }; uint8_t store_index_wind; uint32_t last_store_time_wind; VectorN buffer_wind; VectorN buffer_wind_2; uint32_t time_delta_wind; uint32_t delayed_time_wind; uint32_t wind_start_delay_micros; // internal SITL model SITL::Aircraft *sitl_model; // simulated gimbal bool enable_gimbal; SITL::Gimbal *gimbal; // simulated ADSb SITL::ADSB *adsb; // simulated vicon system: SITL::Vicon *vicon; // simulated Benewake tf02 rangefinder: SITL::RF_Benewake_TF02 *benewake_tf02; // simulated Benewake tf03 rangefinder: SITL::RF_Benewake_TF03 *benewake_tf03; // simulated Benewake tfmini rangefinder: SITL::RF_Benewake_TFmini *benewake_tfmini; // simulated LightWareSerial rangefinder - legacy protocol:: SITL::RF_LightWareSerial *lightwareserial; // simulated LightWareSerial rangefinder - binary protocol: SITL::RF_LightWareSerialBinary *lightwareserial_binary; // simulated Lanbao rangefinder: SITL::RF_Lanbao *lanbao; // simulated BLping rangefinder: SITL::RF_BLping *blping; // simulated LeddarOne rangefinder: SITL::RF_LeddarOne *leddarone; // simulated uLanding v0 rangefinder: SITL::RF_uLanding_v0 *ulanding_v0; // simulated uLanding v1 rangefinder: SITL::RF_uLanding_v1 *ulanding_v1; // simulated MaxsonarSerialLV rangefinder: SITL::RF_MaxsonarSerialLV *maxsonarseriallv; // simulated Wasp rangefinder: SITL::RF_Wasp *wasp; // simulated NMEA rangefinder: SITL::RF_NMEA *nmea; // simulated MAVLink rangefinder: SITL::RF_MAVLink *rf_mavlink; // simulated GYUS42v2 rangefinder: SITL::RF_GYUS42v2 *gyus42v2; // simulated Frsky devices SITL::Frsky_D *frsky_d; // SITL::Frsky_SPort *frsky_sport; // SITL::Frsky_SPortPassthrough *frsky_sportpassthrough; // simulated RPLidarA2: SITL::PS_RPLidarA2 *rplidara2; // simulated FETtec OneWire ESCs: SITL::FETtecOneWireESC *fetteconewireesc; // simulated SF45B proximity sensor: SITL::PS_LightWare_SF45B *sf45b; SITL::PS_TeraRangerTower *terarangertower; // simulated CRSF devices SITL::CRSF *crsf; // simulated VectorNav system: SITL::VectorNav *vectornav; // output socket for flightgear viewing SocketAPM fg_socket{true}; const char *defaults_path = HAL_PARAM_DEFAULTS_PATH; const char *_home_str; char *_gps_fifo[2]; }; #endif // defined(HAL_BUILD_AP_PERIPH) #endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL