#include "Rover.h" #include "GCS_Mavlink.h" #include MAV_TYPE GCS_Rover::frame_type() const { if (rover.is_boat()) { return MAV_TYPE_SURFACE_BOAT; } return MAV_TYPE_GROUND_ROVER; } MAV_MODE GCS_MAVLINK_Rover::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation if (rover.control_mode->has_manual_input()) { _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } if (rover.control_mode->is_autopilot_mode()) { _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; } if (rover.g2.stick_mixing > 0 && rover.control_mode != &rover.mode_initializing) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #if HIL_MODE != HIL_MODE_DISABLED _base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (rover.control_mode != &rover.mode_initializing && rover.arming.is_armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Rover::custom_mode() const { return rover.control_mode->mode_number(); } MAV_STATE GCS_MAVLINK_Rover::system_status() const { if ((rover.failsafe.triggered != 0) || rover.failsafe.ekf) { return MAV_STATE_CRITICAL; } if (rover.control_mode == &rover.mode_initializing) { return MAV_STATE_CALIBRATING; } if (rover.control_mode == &rover.mode_hold) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void GCS_MAVLINK_Rover::send_position_target_global_int() { Location target; if (!rover.control_mode->get_desired_location(target)) { return; } mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL_INT, // targets are always global altitude 0xFFF8, // ignore everything except the x/y/z components target.lat, // latitude as 1e7 target.lng, // longitude as 1e7 target.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } void GCS_MAVLINK_Rover::send_nav_controller_output() const { if (!rover.control_mode->is_autopilot_mode()) { return; } const Mode *control_mode = rover.control_mode; mavlink_msg_nav_controller_output_send( chan, 0, // roll degrees(rover.g2.attitude_control.get_desired_pitch()), control_mode->nav_bearing(), control_mode->wp_bearing(), MIN(control_mode->get_distance_to_destination(), UINT16_MAX), 0, control_mode->speed_error(), control_mode->crosstrack_error()); } void Rover::send_servo_out(mavlink_channel_t chan) { float motor1, motor3; if (g2.motors.have_skid_steering()) { motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleLeft) / 1000.0f); motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleRight) / 1000.0f); } else { motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f); motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f); } mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 motor1, 0, motor3, 0, 0, 0, 0, 0, rssi.read_receiver_rssi_uint8()); } int16_t GCS_MAVLINK_Rover::vfr_hud_throttle() const { return rover.g2.motors.get_throttle(); } void GCS_MAVLINK_Rover::send_rangefinder() const { float distance_cm; float voltage; bool got_one = false; // report smaller distance of all rangefinders for (uint8_t i=0; idistance_cm() < distance_cm) { distance_cm = s->distance_cm(); voltage = s->voltage_mv(); got_one = true; } } if (!got_one) { // no relevant data found return; } mavlink_msg_rangefinder_send( chan, distance_cm * 0.01f, voltage); } /* send PID tuning message */ void GCS_MAVLINK_Rover::send_pid_tuning() { Parameters &g = rover.g; ParametersG2 &g2 = rover.g2; const AP_AHRS &ahrs = AP::ahrs(); const AP_Logger::PID_Info *pid_info; // steering PID if (g.gcs_pid_mask & 1) { pid_info = &g2.attitude_control.get_steering_rate_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER, degrees(pid_info->desired), degrees(ahrs.get_yaw_rate_earth()), pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // speed to throttle PID if (g.gcs_pid_mask & 2) { pid_info = &g2.attitude_control.get_throttle_speed_pid().get_pid_info(); float speed = 0.0f; g2.attitude_control.get_forward_speed(speed); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info->desired, speed, 0, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // pitch to throttle pid if (g.gcs_pid_mask & 4) { pid_info = &g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, degrees(pid_info->desired), degrees(ahrs.pitch), pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // left wheel rate control pid if (g.gcs_pid_mask & 8) { pid_info = &g2.wheel_rate_control.get_pid(0).get_pid_info(); mavlink_msg_pid_tuning_send(chan, 7, pid_info->desired, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // right wheel rate control pid if (g.gcs_pid_mask & 16) { pid_info = &g2.wheel_rate_control.get_pid(1).get_pid_info(); mavlink_msg_pid_tuning_send(chan, 8, pid_info->desired, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // sailboat heel to mainsail pid if (g.gcs_pid_mask & 32) { pid_info = &g2.attitude_control.get_sailboat_heel_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, 9, pid_info->desired, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } void Rover::send_wheel_encoder_distance(mavlink_channel_t chan) { // send wheel encoder data using wheel_distance message if (g2.wheel_encoder.num_sensors() > 0) { double distances[MAVLINK_MSG_WHEEL_DISTANCE_FIELD_DISTANCE_LEN] {}; for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { distances[i] = wheel_encoder_last_distance_m[i]; } mavlink_msg_wheel_distance_send(chan, 1000UL * wheel_encoder_last_ekf_update_ms, g2.wheel_encoder.num_sensors(), distances); } } uint8_t GCS_MAVLINK_Rover::sysid_my_gcs() const { return rover.g.sysid_my_gcs; } bool GCS_MAVLINK_Rover::sysid_enforce() const { return rover.g2.sysid_enforce; } uint32_t GCS_MAVLINK_Rover::telem_delay() const { return static_cast(rover.g.telem_delay); } bool GCS_Rover::vehicle_initialised() const { return rover.control_mode != &rover.mode_initializing; } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id) { // if we don't have at least 0.2ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!hal.scheduler->in_delay_callback() && !AP_BoardConfig::in_sensor_config_error() && rover.scheduler.time_available_usec() < 200) { gcs().set_out_of_time(true); return false; } switch (id) { case MSG_SERVO_OUT: CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); rover.send_servo_out(chan); break; case MSG_WHEEL_DISTANCE: CHECK_PAYLOAD_SIZE(WHEEL_DISTANCE); rover.send_wheel_encoder_distance(chan); break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); rover.g2.windvane.send_wind(chan); break; default: return GCS_MAVLINK::try_send_message(id); } return true; } void GCS_MAVLINK_Rover::packetReceived(const mavlink_status_t &status, mavlink_message_t &msg) { // pass message to follow library rover.g2.follow.handle_msg(msg); GCS_MAVLINK::packetReceived(status, msg); } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, MSG_SENSOR_OFFSETS }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MEMINFO, MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RAW_CONTROLLER_msgs[] = { MSG_SERVO_OUT, }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, MSG_AHRS2, MSG_AHRS3, MSG_PID_TUNING, }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_WIND, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, MSG_SYSTEM_TIME, MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, MSG_RPM, MSG_WHEEL_DISTANCE, MSG_ESC_TELEMETRY, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Rover::in_hil_mode() const { #if HIL_MODE != HIL_MODE_DISABLED return rover.g.hil_mode == 1; #endif return false; } bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (!rover.control_mode->in_guided_mode()) { // only accept position updates when in GUIDED mode return false; } // make any new wp uploaded instant (in case we are already in Guided mode) return rover.mode_guided.set_desired_location(cmd.content.location); } void GCS_MAVLINK_Rover::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // nothing to do } MAV_RESULT GCS_MAVLINK_Rover::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param4, 1.0f)) { if (rover.trim_radio()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } else if (is_equal(packet.param6, 1.0f)) { if (rover.g2.windvane.start_direction_calibration()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } else if (is_equal(packet.param6, 2.0f)) { if (rover.g2.windvane.start_speed_calibration()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } bool GCS_MAVLINK_Rover::set_home_to_current_location(bool lock) { return rover.set_home_to_current_location(lock); } bool GCS_MAVLINK_Rover::set_home(const Location& loc, bool lock) { return rover.set_home(loc, lock); } MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_packet(const mavlink_command_int_t &packet) { switch (packet.command) { case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s if (!rover.control_mode->set_desired_speed(packet.param2)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_SET_REVERSE: // param1 : Direction (0=Forward, 1=Reverse) rover.control_mode->set_reversed(is_equal(packet.param1,1.0f)); return MAV_RESULT_ACCEPTED; default: return GCS_MAVLINK::handle_command_int_packet(packet); } } MAV_RESULT GCS_MAVLINK_Rover::handle_command_long_packet(const mavlink_command_long_t &packet) { switch (packet.command) { case MAV_CMD_NAV_RETURN_TO_LAUNCH: if (rover.set_mode(rover.mode_rtl, MODE_REASON_GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_MISSION_START: if (rover.set_mode(rover.mode_auto, MODE_REASON_GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s if (!rover.control_mode->set_desired_speed(packet.param2)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_SET_REVERSE: // param1 : Direction (0=Forward, 1=Reverse) rover.control_mode->set_reversed(is_equal(packet.param1,1.0f)); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_SET_YAW_SPEED: { // param1 : yaw angle to adjust direction by in centidegress // param2 : Speed - normalized to 0 .. 1 // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { return MAV_RESULT_FAILED; } // send yaw change and target speed to guided mode controller const float speed_max = rover.control_mode->get_speed_default(); const float target_speed = constrain_float(packet.param2 * speed_max, -speed_max, speed_max); rover.mode_guided.set_desired_heading_delta_and_speed(packet.param1, target_speed); return MAV_RESULT_ACCEPTED; } case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) return rover.mavlink_motor_test_start(chan, static_cast(packet.param1), static_cast(packet.param2), static_cast(packet.param3), packet.param4); default: return GCS_MAVLINK::handle_command_long_packet(packet); } } // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes void GCS_MAVLINK_Rover::handle_rc_channels_override(const mavlink_message_t *msg) { rover.failsafe.last_heartbeat_ms = AP_HAL::millis(); GCS_MAVLINK::handle_rc_channels_override(msg); } void GCS_MAVLINK_Rover::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_MANUAL_CONTROL: { if (msg->sysid != rover.g.sysid_my_gcs) { // Only accept control from our gcs break; } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(msg, &packet); if (packet.target != rover.g.sysid_this_mav) { break; // only accept control aimed at us } uint32_t tnow = AP_HAL::millis(); manual_override(rover.channel_steer, packet.y, 1000, 2000, tnow); manual_override(rover.channel_throttle, packet.z, 1000, 2000, tnow); // a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes rover.failsafe.last_heartbeat_ms = tnow; break; } case MAVLINK_MSG_ID_HEARTBEAT: { // we keep track of the last time we received a heartbeat from our GCS for failsafe purposes if (msg->sysid != rover.g.sysid_my_gcs) { break; } rover.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82 { // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(msg, &packet); // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { break; } // ensure type_mask specifies to use thrust if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_THROTTLE_IGNORE) != 0) { break; } // convert thrust to ground speed packet.thrust = constrain_float(packet.thrust, -1.0f, 1.0f); const float target_speed = rover.control_mode->get_speed_default() * packet.thrust; // if the body_yaw_rate field is ignored, convert quaternion to heading if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_YAW_RATE_IGNORE) != 0) { // convert quaternion to heading float target_heading_cd = degrees(Quaternion(packet.q[0], packet.q[1], packet.q[2], packet.q[3]).get_euler_yaw()) * 100.0f; rover.mode_guided.set_desired_heading_and_speed(target_heading_cd, target_speed); } else { // use body_yaw_rate field rover.mode_guided.set_desired_turn_rate_and_speed((RAD_TO_DEG * packet.body_yaw_rate) * 100.0f, target_speed); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare target position Location target_loc = rover.current_loc; if (!pos_ignore) { switch (packet.coordinate_frame) { case MAV_FRAME_BODY_NED: case MAV_FRAME_BODY_OFFSET_NED: { // rotate from body-frame to NE frame const float ne_x = packet.x * rover.ahrs.cos_yaw() - packet.y * rover.ahrs.sin_yaw(); const float ne_y = packet.x * rover.ahrs.sin_yaw() + packet.y * rover.ahrs.cos_yaw(); // add offset to current location target_loc.offset(ne_x, ne_y); } break; case MAV_FRAME_LOCAL_OFFSET_NED: // add offset to current location target_loc.offset(packet.x, packet.y); break; default: // MAV_FRAME_LOCAL_NED interpret as an offset from home target_loc = rover.ahrs.get_home(); target_loc.offset(packet.x, packet.y); break; } } float target_speed = 0.0f; float target_yaw_cd = 0.0f; // consume velocity and convert to target speed and heading if (!vel_ignore) { const float speed_max = rover.control_mode->get_speed_default(); // convert vector length into a speed target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max); // convert vector direction to target yaw target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw heading if (!yaw_ignore) { target_yaw_cd = ToDeg(packet.yaw) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw rate float target_turn_rate_cds = 0.0f; if (!yaw_rate_ignore) { target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // handling case when both velocity and either yaw or yaw-rate are provided // by default, we consider that the rover will drive forward float speed_dir = 1.0f; if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) { // Note: we are using the x-axis velocity to determine direction even though // the frame may have been provided in MAV_FRAME_LOCAL_OFFSET_NED or MAV_FRAME_LOCAL_NED if (is_negative(packet.vx)) { speed_dir = -1.0f; } } // set guided mode targets if (!pos_ignore) { // consume position target if (!rover.mode_guided.set_desired_location(target_loc)) { // GCS will need to monitor desired location to // see if they are having an effect. } } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume velocity and turn rate rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume velocity and heading rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume just target heading (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f); } else if (pos_ignore && vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume just turn rate (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(msg, &packet); // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_GLOBAL && packet.coordinate_frame != MAV_FRAME_GLOBAL_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare target position Location target_loc = rover.current_loc; if (!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { // result = MAV_RESULT_FAILED; break; } target_loc.lat = packet.lat_int; target_loc.lng = packet.lon_int; } float target_speed = 0.0f; float target_yaw_cd = 0.0f; // consume velocity and convert to target speed and heading if (!vel_ignore) { const float speed_max = rover.control_mode->get_speed_default(); // convert vector length into a speed target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max); // convert vector direction to target yaw target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw heading if (!yaw_ignore) { target_yaw_cd = ToDeg(packet.yaw) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw rate float target_turn_rate_cds = 0.0f; if (!yaw_rate_ignore) { target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // handling case when both velocity and either yaw or yaw-rate are provided // by default, we consider that the rover will drive forward float speed_dir = 1.0f; if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) { // Note: we are using the x-axis velocity to determine direction even though // the frame is provided in MAV_FRAME_GLOBAL_xxx if (is_negative(packet.vx)) { speed_dir = -1.0f; } } // set guided mode targets if (!pos_ignore) { // consume position target if (!rover.mode_guided.set_desired_location(target_loc)) { // GCS will just need to look at desired location // outputs to see if it having an effect. } } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume velocity and turn rate rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed); } else if (pos_ignore && !vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (pos_ignore && vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) { // consume just target heading (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f); } else if (pos_ignore && vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) { // consume just turn rate(probably only skid steering vehicles can do this) rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f); } break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // sanity check location if (!check_latlng(packet.lat, packet.lon)) { break; } // set gps hil sensor Location loc; loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0f); accels.y = packet.yacc * (GRAVITY_MSS/1000.0f); accels.z = packet.zacc * (GRAVITY_MSS/1000.0f); ins.set_gyro(0, gyros); ins.set_accel(0, accels); compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, rover.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_DISTANCE_SENSOR: rover.rangefinder.handle_msg(msg); rover.g2.proximity.handle_msg(msg); break; case MAVLINK_MSG_ID_OBSTACLE_DISTANCE: rover.g2.proximity.handle_msg(msg); break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink uint64_t GCS_MAVLINK_Rover::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | MAV_PROTOCOL_CAPABILITY_COMPASS_CALIBRATION | GCS_MAVLINK::capabilities()); } /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Rover::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs().chan(0).initialised) { return; } // don't allow potentially expensive logging calls: logger.EnableWrites(false); const uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs().send_message(MSG_HEARTBEAT); gcs().send_message(MSG_SYS_STATUS); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs().update_receive(); gcs().update_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM"); } logger.EnableWrites(true); } AP_AdvancedFailsafe *GCS_MAVLINK_Rover::get_advanced_failsafe() const { #if ADVANCED_FAILSAFE == ENABLED return &rover.g2.afs; #else return nullptr; #endif } bool GCS_MAVLINK_Rover::set_mode(const uint8_t mode) { Mode *new_mode = rover.mode_from_mode_num((enum Mode::Number)mode); if (new_mode == nullptr) { return false; } return rover.set_mode(*new_mode, MODE_REASON_GCS_COMMAND); }