// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // run_nav_updates - top level call for the autopilot // ensures calculations such as "distance to waypoint" are calculated before autopilot makes decisions // To-Do - rename and move this function to make it's purpose more clear static void run_nav_updates(void) { // fetch position from inertial navigation calc_position(); // calculate distance and bearing for reporting and autopilot decisions calc_distance_and_bearing(); // run autopilot to make high level decisions about control modes run_autopilot(); } // calc_position - get lat and lon positions from inertial nav library static void calc_position(){ if( inertial_nav.position_ok() ) { // pull position from interial nav library current_loc.lng = inertial_nav.get_longitude(); current_loc.lat = inertial_nav.get_latitude(); } } // calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions static void calc_distance_and_bearing() { Vector3f curr = inertial_nav.get_position(); // get target from loiter or wpinav controller if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) { wp_distance = wp_nav.get_loiter_distance_to_target(); wp_bearing = wp_nav.get_loiter_bearing_to_target(); }else if( nav_mode == NAV_WP ) { wp_distance = wp_nav.get_wp_distance_to_destination(); wp_bearing = wp_nav.get_wp_bearing_to_destination(); }else{ wp_distance = 0; wp_bearing = 0; } // calculate home distance and bearing if(GPS_ok()) { home_distance = pythagorous2(curr.x, curr.y); home_bearing = pv_get_bearing_cd(curr,Vector3f(0,0,0)); // update super simple bearing (if required) because it relies on home_bearing update_super_simple_bearing(false); } } // run_autopilot - highest level call to process mission commands static void run_autopilot() { switch( control_mode ) { case AUTO: // load the next command if the command queues are empty update_commands(); // process the active navigation and conditional commands verify_commands(); break; case RTL: verify_RTL(); break; } } // set_nav_mode - update nav mode and initialise any variables as required static bool set_nav_mode(uint8_t new_nav_mode) { bool nav_initialised = false; // boolean to ensure proper initialisation of nav modes Vector3f stopping_point; // stopping point for circle mode // return immediately if no change if( new_nav_mode == nav_mode ) { return true; } switch( new_nav_mode ) { case NAV_NONE: nav_initialised = true; // initialise global navigation variables including wp_distance reset_nav_params(); break; case NAV_LOITER: // set target to current position wp_nav.init_loiter_target(); nav_initialised = true; break; case NAV_WP: nav_initialised = true; break; } // if initialisation has been successful update the yaw mode if( nav_initialised ) { nav_mode = new_nav_mode; } // return success or failure return nav_initialised; } // update_nav_mode - run navigation controller based on nav_mode // called at 100hz static void update_nav_mode() { // exit immediately if not auto_armed or inertial nav position bad if (!ap.auto_armed || !inertial_nav.position_ok()) { return; } switch( nav_mode ) { case NAV_NONE: // do nothing break; case NAV_WP: // call waypoint controller wp_nav.update_wpnav(); break; } } // Keeps old data out of our calculation / logs static void reset_nav_params(void) { // Will be set by new command wp_bearing = 0; // Will be set by new command wp_distance = 0; // Will be set by nav or loiter controllers lon_error = 0; lat_error = 0; } // get_yaw_slew - reduces rate of change of yaw to a maximum // assumes it is called at 100hz so centi-degrees and update rate cancel each other out static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec) { return wrap_360_cd(current_yaw + constrain_int16(wrap_180_cd(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec)); }