/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main logic for servo control */ #include "Plane.h" /***************************************** * Throttle slew limit *****************************************/ void Plane::throttle_slew_limit(int16_t last_throttle) { uint8_t slewrate = aparm.throttle_slewrate; if (control_mode==AUTO) { if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) { slewrate = g.takeoff_throttle_slewrate; } else if (landing.get_throttle_slewrate() != 0 && (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE)) { slewrate = landing.get_throttle_slewrate(); } } // if slew limit rate is set to zero then do not slew limit if (slewrate) { // limit throttle change by the given percentage per second float temp = slewrate * G_Dt * 0.01f * fabsf(channel_throttle->get_radio_max() - channel_throttle->get_radio_min()); // allow a minimum change of 1 PWM per cycle if (temp < 1) { temp = 1; } channel_throttle->set_radio_out(constrain_int16(channel_throttle->get_radio_out(), last_throttle - temp, last_throttle + temp)); } } /***************************************** Flap slew limit *****************************************/ void Plane::flap_slew_limit(int8_t &last_value, int8_t &new_value) { uint8_t slewrate = g.flap_slewrate; // if slew limit rate is set to zero then do not slew limit if (slewrate) { // limit flap change by the given percentage per second float temp = slewrate * G_Dt; // allow a minimum change of 1% per cycle. This means the // slowest flaps we can do is full change over 2 seconds if (temp < 1) { temp = 1; } new_value = constrain_int16(new_value, last_value - temp, last_value + temp); } last_value = new_value; } /* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. Disable throttle if following conditions are met: * 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher * AND * 2 - Our reported altitude is within 10 meters of the home altitude. * 3 - Our reported speed is under 5 meters per second. * 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached * OR * 5 - Home location is not set */ bool Plane::suppress_throttle(void) { #if PARACHUTE == ENABLED if (auto_throttle_mode && parachute.release_initiated()) { // throttle always suppressed in auto-throttle modes after parachute release initiated throttle_suppressed = true; return true; } #endif if (!throttle_suppressed) { // we've previously met a condition for unsupressing the throttle return false; } if (!auto_throttle_mode) { // the user controls the throttle throttle_suppressed = false; return false; } if (control_mode==AUTO && g.auto_fbw_steer == 42) { // user has throttle control return false; } bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5); if (control_mode==AUTO && auto_state.takeoff_complete == false) { uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000; if (is_flying() && millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch gps_movement) { // definite gps movement // we're already flying, do not suppress the throttle. We can get // stuck in this condition if we reset a mission and cmd 1 is takeoff // but we're currently flying around below the takeoff altitude throttle_suppressed = false; return false; } if (auto_takeoff_check()) { // we're in auto takeoff throttle_suppressed = false; auto_state.baro_takeoff_alt = barometer.get_altitude(); return false; } // keep throttle suppressed return true; } if (relative_altitude_abs_cm() >= 1000) { // we're more than 10m from the home altitude throttle_suppressed = false; return false; } if (gps_movement) { // if we have an airspeed sensor, then check it too, and // require 5m/s. This prevents throttle up due to spiky GPS // groundspeed with bad GPS reception if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) { // we're moving at more than 5 m/s throttle_suppressed = false; return false; } } if (quadplane.is_flying()) { throttle_suppressed = false; return false; } // throttle remains suppressed return true; } /* implement a software VTail or elevon mixer. There are 4 different mixing modes */ void Plane::channel_output_mixer(uint8_t mixing_type, int16_t & chan1_out, int16_t & chan2_out)const { int16_t c1, c2; int16_t v1, v2; // first get desired elevator and rudder as -500..500 values c1 = chan1_out - 1500; c2 = chan2_out - 1500; // apply MIXING_OFFSET to input channels using long-integer version // of formula: x = x * (g.mixing_offset/100.0 + 1.0) // -100 => 2x on 'c1', 100 => 2x on 'c2' if (g.mixing_offset < 0) { c1 = (int16_t)(((int32_t)c1) * (-g.mixing_offset+100) / 100); } else if (g.mixing_offset > 0) { c2 = (int16_t)(((int32_t)c2) * (g.mixing_offset+100) / 100); } v1 = (c1 - c2) * g.mixing_gain; v2 = (c1 + c2) * g.mixing_gain; // now map to mixed output switch (mixing_type) { case MIXING_DISABLED: return; case MIXING_UPUP: break; case MIXING_UPDN: v2 = -v2; break; case MIXING_DNUP: v1 = -v1; break; case MIXING_DNDN: v1 = -v1; v2 = -v2; break; case MIXING_UPUP_SWP: std::swap(v1, v2); break; case MIXING_UPDN_SWP: v2 = -v2; std::swap(v1, v2); break; case MIXING_DNUP_SWP: v1 = -v1; std::swap(v1, v2); break; case MIXING_DNDN_SWP: v1 = -v1; v2 = -v2; std::swap(v1, v2); break; } // scale for a 1500 center and 900..2100 range, symmetric v1 = constrain_int16(v1, -600, 600); v2 = constrain_int16(v2, -600, 600); chan1_out = 1500 + v1; chan2_out = 1500 + v2; } void Plane::channel_output_mixer(uint8_t mixing_type, RC_Channel* chan1, RC_Channel* chan2)const { int16_t ch1 = chan1->get_radio_out(); int16_t ch2 = chan2->get_radio_out(); channel_output_mixer(mixing_type,ch1,ch2); chan1->set_radio_out(ch1); chan2->set_radio_out(ch2); } /* setup flaperon output channels */ void Plane::flaperon_update(int8_t flap_percent) { if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon1) || !RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon2)) { return; } int16_t ch1, ch2; /* flaperons are implemented as a mixer between aileron and a percentage of flaps. Flap input can come from a manual channel or from auto flaps. Use k_flaperon1 and k_flaperon2 channel trims to center servos. Then adjust aileron trim for level flight (note that aileron trim is affected by mixing gain). flapin_channel's trim is not used. */ ch1 = channel_roll->get_radio_out(); // The *5 is to take a percentage to a value from -500 to 500 for the mixer ch2 = 1500 - flap_percent * 5; channel_output_mixer(g.flaperon_output, ch1, ch2); RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon1, ch1); RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon2, ch2); } /* setup servos for idle mode Idle mode is used during balloon launch to keep servos still, apart from occasional wiggle to prevent freezing up */ void Plane::set_servos_idle(void) { RC_Channel_aux::output_ch_all(); if (auto_state.idle_wiggle_stage == 0) { RC_Channel::output_trim_all(); return; } int16_t servo_value = 0; // move over full range for 2 seconds auto_state.idle_wiggle_stage += 2; if (auto_state.idle_wiggle_stage < 50) { servo_value = auto_state.idle_wiggle_stage * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 100) { servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 150) { servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 200) { servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50); } else { auto_state.idle_wiggle_stage = 0; } channel_roll->set_servo_out(servo_value); channel_pitch->set_servo_out(servo_value); channel_rudder->set_servo_out(servo_value); channel_roll->calc_pwm(); channel_pitch->calc_pwm(); channel_rudder->calc_pwm(); channel_throttle->output_trim(); } /* return minimum throttle PWM value, taking account of throttle reversal. For reverse thrust you get the throttle off position */ uint16_t Plane::throttle_min(void) const { if (aparm.throttle_min < 0) { return channel_throttle->get_radio_trim(); } return channel_throttle->get_reverse() ? channel_throttle->get_radio_max() : channel_throttle->get_radio_min(); }; /* pass through channels in manual mode */ void Plane::set_servos_manual_passthrough(void) { // do a direct pass through of radio values if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) { channel_roll->set_radio_out(channel_roll->get_radio_in()); channel_pitch->set_radio_out(channel_pitch->get_radio_in()); } else { channel_roll->set_radio_out(channel_roll->read()); channel_pitch->set_radio_out(channel_pitch->read()); } channel_throttle->set_radio_out(channel_throttle->get_radio_in()); channel_rudder->set_radio_out(channel_rudder->get_radio_in()); // setup extra channels. We want this to come from the // main input channel, but using the 2nd channels dead // zone, reverse and min/max settings. We need to use // pwm_to_angle_dz() to ensure we don't trim the value for the // deadzone of the main aileron channel, otherwise the 2nd // aileron won't quite follow the first one RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->pwm_to_angle_dz(0)); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->pwm_to_angle_dz(0)); // this variant assumes you have the corresponding // input channel setup in your transmitter for manual control // of the 2nd aileron RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input); RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input); } /* old (deprecated) elevon support */ void Plane::set_servos_old_elevons(void) { /*Elevon mode*/ float ch1; float ch2; ch1 = channel_pitch->get_servo_out() - (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); ch2 = channel_pitch->get_servo_out() + (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); /* Differential Spoilers If differential spoilers are setup, then we translate rudder control into splitting of the two ailerons on the side of the aircraft where we want to induce additional drag. */ if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { float ch3 = ch1; float ch4 = ch2; if ( BOOL_TO_SIGN(g.reverse_elevons) * channel_rudder->get_servo_out() < 0) { ch1 += abs(channel_rudder->get_servo_out()); ch3 -= abs(channel_rudder->get_servo_out()); } else { ch2 += abs(channel_rudder->get_servo_out()); ch4 -= abs(channel_rudder->get_servo_out()); } RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, ch3); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, ch4); } // directly set the radio_out values for elevon mode channel_roll->set_radio_out(elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0f/ SERVO_MAX))); channel_pitch->set_radio_out(elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0f/ SERVO_MAX))); } /* calculate any throttle limits based on the watt limiter */ void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle) { uint32_t now = millis(); if (battery.overpower_detected()) { // overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value // throttle limit will attack by 10% per second if (channel_throttle->get_servo_out() > 0 && // demanding too much positive thrust throttle_watt_limit_max < max_throttle - 25 && now - throttle_watt_limit_timer_ms >= 1) { // always allow for 25% throttle available regardless of battery status throttle_watt_limit_timer_ms = now; throttle_watt_limit_max++; } else if (channel_throttle->get_servo_out() < 0 && min_throttle < 0 && // reverse thrust is available throttle_watt_limit_min < -(min_throttle) - 25 && now - throttle_watt_limit_timer_ms >= 1) { // always allow for 25% throttle available regardless of battery status throttle_watt_limit_timer_ms = now; throttle_watt_limit_min++; } } else if (now - throttle_watt_limit_timer_ms >= 1000) { // it has been 1 second since last over-current, check if we can resume higher throttle. // this throttle release is needed to allow raising the max_throttle as the battery voltage drains down // throttle limit will release by 1% per second if (channel_throttle->get_servo_out() > throttle_watt_limit_max && // demanding max forward thrust throttle_watt_limit_max > 0) { // and we're currently limiting it throttle_watt_limit_timer_ms = now; throttle_watt_limit_max--; } else if (channel_throttle->get_servo_out() < throttle_watt_limit_min && // demanding max negative thrust throttle_watt_limit_min > 0) { // and we're limiting it throttle_watt_limit_timer_ms = now; throttle_watt_limit_min--; } } max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max); if (min_throttle < 0) { min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0); } } /* setup output channels all non-manual modes */ void Plane::set_servos_controlled(void) { if (g.mix_mode != 0) { set_servos_old_elevons(); } else { // both types of secondary aileron are slaved to the roll servo out RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->get_servo_out()); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron_with_input, channel_roll->get_servo_out()); // both types of secondary elevator are slaved to the pitch servo out RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->get_servo_out()); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator_with_input, channel_pitch->get_servo_out()); // push out the PWM values channel_roll->calc_pwm(); channel_pitch->calc_pwm(); } channel_rudder->calc_pwm(); // convert 0 to 100% (or -100 to +100) into PWM int8_t min_throttle = aparm.throttle_min.get(); int8_t max_throttle = aparm.throttle_max.get(); if (min_throttle < 0 && !allow_reverse_thrust()) { // reverse thrust is available but inhibited. min_throttle = 0; } if (control_mode == AUTO) { if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) { min_throttle = 0; } if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) { if(aparm.takeoff_throttle_max != 0) { max_throttle = aparm.takeoff_throttle_max; } else { max_throttle = aparm.throttle_max; } } } // apply watt limiter throttle_watt_limiter(min_throttle, max_throttle); channel_throttle->set_servo_out(constrain_int16(channel_throttle->get_servo_out(), min_throttle, max_throttle)); if (!hal.util->get_soft_armed()) { channel_throttle->set_servo_out(0); channel_throttle->calc_pwm(); } else if (suppress_throttle()) { // throttle is suppressed in auto mode channel_throttle->set_servo_out(0); if (g.throttle_suppress_manual) { // manual pass through of throttle while throttle is suppressed channel_throttle->set_radio_out(channel_throttle->get_radio_in()); } else { channel_throttle->calc_pwm(); } } else if (g.throttle_passthru_stabilize && (control_mode == STABILIZE || control_mode == TRAINING || control_mode == ACRO || control_mode == FLY_BY_WIRE_A || control_mode == AUTOTUNE) && !failsafe.ch3_counter) { // manual pass through of throttle while in FBWA or // STABILIZE mode with THR_PASS_STAB set channel_throttle->set_radio_out(channel_throttle->get_radio_in()); } else if ((control_mode == GUIDED || control_mode == AVOID_ADSB) && guided_throttle_passthru) { // manual pass through of throttle while in GUIDED channel_throttle->set_radio_out(channel_throttle->get_radio_in()); } else if (quadplane.in_vtol_mode()) { // ask quadplane code for forward throttle channel_throttle->set_servo_out(quadplane.forward_throttle_pct()); channel_throttle->calc_pwm(); } else { // normal throttle calculation based on servo_out channel_throttle->calc_pwm(); } } /* setup flap outputs */ void Plane::set_servos_flaps(void) { // Auto flap deployment int8_t auto_flap_percent = 0; int8_t manual_flap_percent = 0; static int8_t last_auto_flap; static int8_t last_manual_flap; // work out any manual flap input RC_Channel *flapin = RC_Channel::rc_channel(g.flapin_channel-1); if (flapin != nullptr && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) { flapin->input(); manual_flap_percent = flapin->percent_input(); } if (auto_throttle_mode) { int16_t flapSpeedSource = 0; if (ahrs.airspeed_sensor_enabled()) { flapSpeedSource = target_airspeed_cm * 0.01f; } else { flapSpeedSource = aparm.throttle_cruise; } if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) { auto_flap_percent = g.flap_2_percent; } else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) { auto_flap_percent = g.flap_1_percent; } //else flaps stay at default zero deflection /* special flap levels for takeoff and landing. This works better than speed based flaps as it leads to less possibility of oscillation */ if (control_mode == AUTO) { switch (flight_stage) { case AP_SpdHgtControl::FLIGHT_TAKEOFF: case AP_SpdHgtControl::FLIGHT_LAND_ABORT: if (g.takeoff_flap_percent != 0) { auto_flap_percent = g.takeoff_flap_percent; } break; case AP_SpdHgtControl::FLIGHT_NORMAL: if (auto_flap_percent != 0 && in_preLaunch_flight_stage()) { // TODO: move this to a new FLIGHT_PRE_TAKEOFF stage auto_flap_percent = g.takeoff_flap_percent; } break; case AP_SpdHgtControl::FLIGHT_LAND_APPROACH: case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE: case AP_SpdHgtControl::FLIGHT_LAND_FINAL: if (landing.get_flap_percent() != 0) { auto_flap_percent = landing.get_flap_percent(); } break; default: break; } } } // manual flap input overrides auto flap input if (abs(manual_flap_percent) > auto_flap_percent) { auto_flap_percent = manual_flap_percent; } flap_slew_limit(last_auto_flap, auto_flap_percent); flap_slew_limit(last_manual_flap, manual_flap_percent); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap_auto, auto_flap_percent); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap, manual_flap_percent); if (g.flaperon_output != MIXING_DISABLED && g.elevon_output == MIXING_DISABLED && g.mix_mode == 0) { flaperon_update(auto_flap_percent); } } /* apply vtail and elevon mixers the rewrites radio_out for the corresponding channels */ void Plane::servo_output_mixers(void) { if (g.vtail_output != MIXING_DISABLED) { channel_output_mixer(g.vtail_output, channel_pitch, channel_rudder); } else if (g.elevon_output != MIXING_DISABLED) { channel_output_mixer(g.elevon_output, channel_pitch, channel_roll); // if (both) differential spoilers setup then apply rudder // control into splitting the two elevons on the side of // the aircraft where we want to induce additional drag: if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { int16_t ch3 = channel_roll->get_radio_out(); //diff spoiler 1 int16_t ch4 = channel_pitch->get_radio_out(); //diff spoiler 2 // convert rudder-servo output (-4500 to 4500) to PWM offset // value (-500 to 500) and multiply by DSPOILR_RUD_RATE/100 // (rudder->servo_out * 500 / SERVO_MAX * dspoiler_rud_rate/100): int16_t ruddVal = (int16_t)((int32_t)(channel_rudder->get_servo_out()) * g.dspoiler_rud_rate / (SERVO_MAX/5)); if (ruddVal != 0) { //if nonzero rudder then apply to spoilers int16_t ch1 = ch3; //elevon 1 int16_t ch2 = ch4; //elevon 2 if (ruddVal > 0) { //apply rudder to right or left side ch1 += ruddVal; ch3 -= ruddVal; } else { ch2 += ruddVal; ch4 -= ruddVal; } // change elevon 1 & 2 positions; constrain min/max: channel_roll->set_radio_out(constrain_int16(ch1, 900, 2100)); channel_pitch->set_radio_out(constrain_int16(ch2, 900, 2100)); // constrain min/max for intermediate dspoiler positions: ch3 = constrain_int16(ch3, 900, 2100); ch4 = constrain_int16(ch4, 900, 2100); } // set positions of differential spoilers (convert PWM // 900-2100 range to servo output (-4500 to 4500) // and use function that supports rev/min/max/trim): RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, (ch3-(int16_t)1500) * (int16_t)(SERVO_MAX/300) / (int16_t)2); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, (ch4-(int16_t)1500) * (int16_t)(SERVO_MAX/300) / (int16_t)2); } } } /* Set the flight control servos based on the current calculated values This function operates by first building up output values for channels using set_servo() and set_radio_out(). Using set_radio_out() is for when a raw PWM value of output is given which does not depend on any output scaling. Using set_servo() is for when scaling and mixing will be needed. Finally servos_output() is called to push the final PWM values for output channels */ void Plane::set_servos(void) { // start with output corked. the cork is released when we run // servos_output(), which is run from all code paths in this // function hal.rcout->cork(); // this is to allow the failsafe module to deliberately crash // the plane. Only used in extreme circumstances to meet the // OBC rules if (afs.should_crash_vehicle()) { afs.terminate_vehicle(); return; } int16_t last_throttle = channel_throttle->get_radio_out(); // do any transition updates for quadplane quadplane.update(); if (control_mode == AUTO && auto_state.idle_mode) { // special handling for balloon launch set_servos_idle(); servos_output(); return; } /* see if we are doing ground steering. */ if (!steering_control.ground_steering) { // we are not at an altitude for ground steering. Set the nose // wheel to the rudder just in case the barometer has drifted // a lot steering_control.steering = steering_control.rudder; } else if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_steering)) { // we are within the ground steering altitude but don't have a // dedicated steering channel. Set the rudder to the ground // steering output steering_control.rudder = steering_control.steering; } channel_rudder->set_servo_out(steering_control.rudder); // clear ground_steering to ensure manual control if the yaw stabilizer doesn't run steering_control.ground_steering = false; RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_rudder, steering_control.rudder); RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_steering, steering_control.steering); if (control_mode == MANUAL) { set_servos_manual_passthrough(); } else { set_servos_controlled(); } // setup flap outputs set_servos_flaps(); if (control_mode >= FLY_BY_WIRE_B || quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) { /* only do throttle slew limiting in modes where throttle * control is automatic */ throttle_slew_limit(last_throttle); } if (control_mode == TRAINING) { // copy rudder in training mode channel_rudder->set_radio_out(channel_rudder->get_radio_in()); } if (!arming.is_armed()) { //Some ESCs get noisy (beep error msgs) if PWM == 0. //This little segment aims to avoid this. switch (arming.arming_required()) { case AP_Arming::NO: //keep existing behavior: do nothing to radio_out //(don't disarm throttle channel even if AP_Arming class is) break; case AP_Arming::YES_ZERO_PWM: channel_throttle->set_servo_out(0); channel_throttle->set_radio_out(0); break; case AP_Arming::YES_MIN_PWM: default: channel_throttle->set_servo_out(0); channel_throttle->set_radio_out(throttle_min()); break; } } #if HIL_SUPPORT if (g.hil_mode == 1) { // get the servos to the GCS immediately for HIL if (HAVE_PAYLOAD_SPACE(MAVLINK_COMM_0, RC_CHANNELS_SCALED)) { send_servo_out(MAVLINK_COMM_0); } if (!g.hil_servos) { // we don't run the output mixer return; } } #endif if (landing.get_then_servos_neutral() > 0 && control_mode == AUTO && landing.get_disarm_delay() > 0 && landing.complete && !arming.is_armed()) { // after an auto land and auto disarm, set the servos to be neutral just // in case we're upside down or some crazy angle and straining the servos. if (landing.get_then_servos_neutral() == 1) { channel_roll->set_radio_out(channel_roll->get_radio_trim()); channel_pitch->set_radio_out(channel_pitch->get_radio_trim()); channel_rudder->set_radio_out(channel_rudder->get_radio_trim()); } else if (landing.get_then_servos_neutral() == 2) { channel_roll->disable_out(); channel_pitch->disable_out(); channel_rudder->disable_out(); } } uint8_t override_pct; if (g2.ice_control.throttle_override(override_pct)) { // the ICE controller wants to override the throttle for starting channel_throttle->set_servo_out(override_pct); channel_throttle->calc_pwm(); } // allow for secondary throttle RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_throttle, channel_throttle->get_servo_out()); // run output mixer and send values to the hal for output servos_output(); } /* run configured output mixer. This takes calculated servo_out values for each channel and calculates PWM values, then pushes them to hal.rcout */ void Plane::servos_output(void) { hal.rcout->cork(); // to enable the throttle slew rate to work we need to remember // and restore the throttle radio_out uint16_t thr_radio_out_saved = channel_throttle->get_radio_out(); // remap servo output to SERVO* ranges if enabled g2.servo_channels.remap_servo_output(); // run vtail and elevon mixers servo_output_mixers(); channel_roll->output(); channel_pitch->output(); channel_throttle->output(); channel_rudder->output(); if (!afs.should_crash_vehicle()) { RC_Channel_aux::output_ch_all(); } hal.rcout->push(); // restore throttle radio out channel_throttle->set_radio_out(thr_radio_out_saved); if (g2.servo_channels.auto_trim_enabled()) { servos_auto_trim(); } } /* implement automatic persistent trim of control surfaces with AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it would impact R/C transmitter calibration */ void Plane::servos_auto_trim(void) { if (!g2.servo_channels.enabled()) { // only possible with SERVO_RNG_ENABLE=1 return; } // only in auto modes and FBWA if (!auto_throttle_mode && control_mode != FLY_BY_WIRE_A) { return; } if (!hal.util->get_soft_armed()) { return; } if (!is_flying()) { return; } if (quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) { // can't auto-trim with quadplane motors running return; } if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) { // only when close to level return; } uint32_t now = AP_HAL::millis(); if (now - auto_trim.last_trim_check < 500) { // check twice a second. We want slow trim update return; } if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) { // only when definitely moving return; } // adjust trim on channels by a small amount according to I value g2.servo_channels.adjust_trim(channel_roll->get_ch_out(), rollController.get_pid_info().I); g2.servo_channels.adjust_trim(channel_pitch->get_ch_out(), pitchController.get_pid_info().I); auto_trim.last_trim_check = now; if (now - auto_trim.last_trim_save > 10000) { auto_trim.last_trim_save = now; g2.servo_channels.save_trim(); } }