#include #include "Plane.h" void Plane::avoidance_adsb_update(void) { adsb.update(); avoidance_adsb.update(); } MAV_COLLISION_ACTION AP_Avoidance_Plane::handle_avoidance(const AP_Avoidance::Obstacle *obstacle, MAV_COLLISION_ACTION requested_action) { MAV_COLLISION_ACTION actual_action = requested_action; bool failsafe_state_change = false; // check for changes in failsafe if (!plane.failsafe.adsb) { plane.failsafe.adsb = true; failsafe_state_change = true; // record flight mode in case it's required for the recovery prev_control_mode = plane.control_mode; } // take no action in some flight modes if (plane.control_mode == MANUAL || (plane.control_mode == AUTO && !plane.auto_state.takeoff_complete) || (plane.control_mode == AUTO && plane.landing.in_progress) || // TODO: consider allowing action during approach plane.control_mode == AUTOTUNE || plane.control_mode == QLAND) { actual_action = MAV_COLLISION_ACTION_NONE; } // take action based on requested action switch (actual_action) { case MAV_COLLISION_ACTION_RTL: if (failsafe_state_change) { plane.set_mode(RTL, MODE_REASON_AVOIDANCE); } break; case MAV_COLLISION_ACTION_HOVER: if (failsafe_state_change) { if (plane.quadplane.is_flying()) { plane.set_mode(QLOITER, MODE_REASON_AVOIDANCE); } else { plane.set_mode(LOITER, MODE_REASON_AVOIDANCE); } } break; case MAV_COLLISION_ACTION_ASCEND_OR_DESCEND: // climb or descend to avoid obstacle if (handle_avoidance_vertical(obstacle, failsafe_state_change)) { plane.set_guided_WP(); } else { actual_action = MAV_COLLISION_ACTION_NONE; } break; case MAV_COLLISION_ACTION_MOVE_HORIZONTALLY: // move horizontally to avoid obstacle if (handle_avoidance_horizontal(obstacle, failsafe_state_change)) { plane.set_guided_WP(); } else { actual_action = MAV_COLLISION_ACTION_NONE; } break; case MAV_COLLISION_ACTION_MOVE_PERPENDICULAR: { // move horizontally and vertically to avoid obstacle const bool success_vert = handle_avoidance_vertical(obstacle, failsafe_state_change); const bool success_hor = handle_avoidance_horizontal(obstacle, failsafe_state_change); if (success_vert || success_hor) { plane.set_guided_WP(); } else { actual_action = MAV_COLLISION_ACTION_NONE; } } break; // unsupported actions and those that require no response case MAV_COLLISION_ACTION_NONE: return actual_action; case MAV_COLLISION_ACTION_REPORT: default: break; } if (failsafe_state_change) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_ALERT, "Avoid: Performing action: %d", actual_action); } // return with action taken return actual_action; } void AP_Avoidance_Plane::handle_recovery(uint8_t recovery_action) { // check we are coming out of failsafe if (plane.failsafe.adsb) { plane.failsafe.adsb = false; GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Avoid: Resuming with action: %d", recovery_action); // restore flight mode if requested and user has not changed mode since if (plane.control_mode_reason == MODE_REASON_AVOIDANCE) { switch (recovery_action) { case AP_AVOIDANCE_RECOVERY_REMAIN_IN_AVOID_ADSB: // do nothing, we'll stay in the AVOID_ADSB mode which is guided which will loiter break; case AP_AVOIDANCE_RECOVERY_RESUME_PREVIOUS_FLIGHTMODE: plane.set_mode(prev_control_mode, MODE_REASON_AVOIDANCE_RECOVERY); break; case AP_AVOIDANCE_RECOVERY_RTL: plane.set_mode(RTL, MODE_REASON_AVOIDANCE_RECOVERY); break; case AP_AVOIDANCE_RECOVERY_RESUME_IF_AUTO_ELSE_LOITER: if (prev_control_mode == AUTO) { plane.set_mode(AUTO, MODE_REASON_AVOIDANCE_RECOVERY); } // else do nothing, same as AP_AVOIDANCE_RECOVERY_LOITER break; default: break; } // switch } } } // check flight mode is avoid_adsb bool AP_Avoidance_Plane::check_flightmode(bool allow_mode_change) { // ensure plane is in avoid_adsb mode if (allow_mode_change && plane.control_mode != AVOID_ADSB) { plane.set_mode(AVOID_ADSB, MODE_REASON_AVOIDANCE); } // check flight mode return (plane.control_mode == AVOID_ADSB); } bool AP_Avoidance_Plane::handle_avoidance_vertical(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change) { // ensure copter is in avoid_adsb mode if (!check_flightmode(allow_mode_change)) { return false; } // get best vector away from obstacle if (plane.current_loc.alt > obstacle->_location.alt) { // should climb plane.guided_WP_loc.alt = plane.current_loc.alt + 1000; // set alt demand to be 10m above us, climb rate will be TECS_CLMB_MAX return true; } else if (plane.current_loc.alt > plane.g.RTL_altitude_cm) { // should descend while above RTL alt // TODO: consider using a lower altitude than RTL_altitude_cm since it's default (100m) is quite high plane.guided_WP_loc.alt = plane.current_loc.alt - 1000; // set alt demand to be 10m below us, sink rate will be TECS_SINK_MAX return true; } return false; } bool AP_Avoidance_Plane::handle_avoidance_horizontal(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change) { // ensure plane is in avoid_adsb mode if (!check_flightmode(allow_mode_change)) { return false; } // get best vector away from obstacle Vector3f velocity_neu; if (get_vector_perpendicular(obstacle, velocity_neu)) { // remove vertical component velocity_neu.z = 0.0f; // check for divide by zero if (is_zero(velocity_neu.x) && is_zero(velocity_neu.y)) { return false; } // re-normalize velocity_neu.normalize(); // push vector further away. velocity_neu *= 10000; // set target location_offset(plane.guided_WP_loc, velocity_neu.x, velocity_neu.y); return true; } // if we got this far we failed to set the new target return false; }