/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer * Code by Jordi Muñoz and Jose Julio. DIYDrones.com * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Sensor is conected to I2C port * Sensor is initialized in Continuos mode (10Hz) * */ // AVR LibC Includes #include #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WConstants.h" #endif #include #include "AP_Compass_HMC5843.h" #define COMPASS_ADDRESS 0x1E #define ConfigRegA 0x00 #define ConfigRegB 0x01 #define magGain 0x20 #define PositiveBiasConfig 0x11 #define NegativeBiasConfig 0x12 #define NormalOperation 0x10 #define ModeRegister 0x02 #define ContinuousConversion 0x00 #define SingleConversion 0x01 // ConfigRegA valid sample averaging for 5883L #define SampleAveraging_1 0x00 #define SampleAveraging_2 0x01 #define SampleAveraging_4 0x02 #define SampleAveraging_8 0x03 // ConfigRegA valid data output rates for 5883L #define DataOutputRate_0_75HZ 0x00 #define DataOutputRate_1_5HZ 0x01 #define DataOutputRate_3HZ 0x02 #define DataOutputRate_7_5HZ 0x03 #define DataOutputRate_15HZ 0x04 #define DataOutputRate_30HZ 0x05 #define DataOutputRate_75HZ 0x06 // read_register - read a register value bool AP_Compass_HMC5843::read_register(uint8_t address, uint8_t *value) { if (I2c.read((uint8_t)COMPASS_ADDRESS, address, 1, value) != 0) { healthy = false; return false; } return true; } // write_register - update a register value bool AP_Compass_HMC5843::write_register(uint8_t address, byte value) { if (I2c.write((uint8_t)COMPASS_ADDRESS, address, value) != 0) { healthy = false; return false; } return true; } // Read Sensor data bool AP_Compass_HMC5843::read_raw() { uint8_t buff[6]; if (I2c.read(COMPASS_ADDRESS, 0x03, 6, buff) != 0) { if (healthy) { I2c.setSpeed(false); } healthy = false; return false; } int16_t rx, ry, rz; rx = (int16_t)(buff[0] << 8) | buff[1]; if (product_id == AP_COMPASS_TYPE_HMC5883L) { rz = (int16_t)(buff[2] << 8) | buff[3]; ry = (int16_t)(buff[4] << 8) | buff[5]; } else { ry = (int16_t)(buff[2] << 8) | buff[3]; rz = (int16_t)(buff[4] << 8) | buff[5]; } if (rx == -4096 || ry == -4096 || rz == -4096) { // no valid data available return false; } _mag_x = -rx; _mag_y = ry; _mag_z = -rz; return true; } // accumulate a reading from the magnetometer void AP_Compass_HMC5843::accumulate(void) { uint32_t tnow = micros(); if (healthy && _accum_count != 0 && (tnow - _last_accum_time) < 13333) { // the compass gets new data at 75Hz return; } if (read_raw()) { // the _mag_N values are in the range -2048 to 2047, so we can // accumulate up to 15 of them in an int16_t. Let's make it 14 // for ease of calculation. We expect to do reads at 10Hz, and // we get new data at most 75Hz, so we don't expect to // accumulate more than 8 before a read _mag_x_accum += _mag_x; _mag_y_accum += _mag_y; _mag_z_accum += _mag_z; _accum_count++; if (_accum_count == 14) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 7; } _last_accum_time = tnow; } } /* * re-initialise after a IO error */ bool AP_Compass_HMC5843::re_initialise() { if (!write_register(ConfigRegA, _base_config) || !write_register(ConfigRegB, magGain) || !write_register(ModeRegister, ContinuousConversion)) return false; return true; } // Public Methods ////////////////////////////////////////////////////////////// bool AP_Compass_HMC5843::init() { int numAttempts = 0, good_count = 0; bool success = false; byte calibration_gain = 0x20; uint16_t expected_x = 715; uint16_t expected_yz = 715; float gain_multiple = 1.0; delay(10); // determine if we are using 5843 or 5883L if (!write_register(ConfigRegA, SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation) || !read_register(ConfigRegA, &_base_config)) { healthy = false; return false; } if ( _base_config == (SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation)) { // a 5883L supports the sample averaging config product_id = AP_COMPASS_TYPE_HMC5883L; calibration_gain = 0x60; expected_x = 766; expected_yz = 713; gain_multiple = 660.0 / 1090; // adjustment for runtime vs calibration gain } else if (_base_config == (NormalOperation | DataOutputRate_75HZ<<2)) { product_id = AP_COMPASS_TYPE_HMC5843; } else { // not behaving like either supported compass type return false; } calibration[0] = 0; calibration[1] = 0; calibration[2] = 0; while ( success == 0 && numAttempts < 20 && good_count < 5) { // record number of attempts at initialisation numAttempts++; // force positiveBias (compass should return 715 for all channels) if (!write_register(ConfigRegA, PositiveBiasConfig)) continue; // compass not responding on the bus delay(50); // set gains if (!write_register(ConfigRegB, calibration_gain) || !write_register(ModeRegister, SingleConversion)) continue; // read values from the compass delay(50); if (!read_raw()) continue; // we didn't read valid values delay(10); float cal[3]; cal[0] = fabs(expected_x / (float)_mag_x); cal[1] = fabs(expected_yz / (float)_mag_y); cal[2] = fabs(expected_yz / (float)_mag_z); if (cal[0] > 0.7 && cal[0] < 1.3 && cal[1] > 0.7 && cal[1] < 1.3 && cal[2] > 0.7 && cal[2] < 1.3) { good_count++; calibration[0] += cal[0]; calibration[1] += cal[1]; calibration[2] += cal[2]; } #if 0 /* useful for debugging */ Serial.print("mag_x: "); Serial.print(_mag_x); Serial.print(" mag_y: "); Serial.print(_mag_y); Serial.print(" mag_z: "); Serial.println(_mag_z); Serial.print("CalX: "); Serial.print(calibration[0]/good_count); Serial.print(" CalY: "); Serial.print(calibration[1]/good_count); Serial.print(" CalZ: "); Serial.println(calibration[2]/good_count); #endif } if (good_count >= 5) { calibration[0] = calibration[0] * gain_multiple / good_count; calibration[1] = calibration[1] * gain_multiple / good_count; calibration[2] = calibration[2] * gain_multiple / good_count; success = true; } else { /* best guess */ calibration[0] = 1.0; calibration[1] = 1.0; calibration[2] = 1.0; } // leave test mode if (!re_initialise()) { return false; } _initialised = true; // perform an initial read healthy = true; read(); return success; } // Read Sensor data bool AP_Compass_HMC5843::read() { if (!_initialised) { // someone has tried to enable a compass for the first time // mid-flight .... we can't do that yet (especially as we won't // have the right orientation!) return false; } if (!healthy) { if (millis() < _retry_time) { return false; } if (!re_initialise()) { _retry_time = millis() + 1000; I2c.setSpeed(false); return false; } } if (_accum_count == 0) { accumulate(); if (!healthy || _accum_count == 0) { // try again in 1 second, and set I2c clock speed slower _retry_time = millis() + 1000; I2c.setSpeed(false); return false; } } mag_x = _mag_x_accum * calibration[0] / _accum_count; mag_y = _mag_y_accum * calibration[1] / _accum_count; mag_z = _mag_z_accum * calibration[2] / _accum_count; _accum_count = 0; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; last_update = micros(); // record time of update // rotate to the desired orientation Vector3f rot_mag = Vector3f(mag_x,mag_y,mag_z); if (product_id == AP_COMPASS_TYPE_HMC5883L) { rot_mag.rotate(ROTATION_YAW_90); } rot_mag.rotate(_orientation); rot_mag += _offset.get(); mag_x = rot_mag.x; mag_y = rot_mag.y; mag_z = rot_mag.z; healthy = true; return true; } // set orientation void AP_Compass_HMC5843::set_orientation(enum Rotation rotation) { _orientation = rotation; }